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INTRODUCTION

Consider the nonlinear Schrödinger equation

iut = △u+ u2, x ∈ T ≡ R/ 2π
ω Z. (1)

This NLS does not have gauge invariance,
(eiθu)2 ̸= eiθu2 for generic θ ∈ R, and it does
not admit a natural Hamiltonian structure.
When restricting (1) to constant initial data one
obtains the ODE iż = z2, whereby 0 is foliated
by homoclinic solutions, with the exception of
some finite time blowup solutions. Figure 1: Dynamics of izt = z2

HOMOCLINICS & NONEXISTENCE OF CONSERVED QUANTITIES

From their numerics, Cho et al. conjectured that
real initial data to (1) is globally well posed [1].
For close-to-constant real initial data we show
this to be the case, and solutions limit to 0 as
t → ±∞ [2]. Moreover, we prove the following.

Theorem 1 ( [2]). There exists an open set of com-
plex initial data with summable Fourier coefficients
whose solutions are homoclinic orbits, limiting to 0
in both forward and backward time.

Note that if there exists some continuous con-
served quantity H , it would necessarily be con-
stant on this open set and equal to H(0). More-
over, if H was analytic then it would have to be
globally constant; ie (1) is nonconservative.

Corollary 2 ( [2]). The only analytic functionals
conserved under (1) are constant.
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INTEGRABLE DYNAMICS, PERIODIC SOLUTIONS & BLOWUP

Surprisingly, (1) has an integrable subsystem
the space of initial data supported on non-
negative Fourier coefficients, akin to the cubic
Szegő equation [4].

Theorem 3 ( [3]). The initial data u0(x) =∑
n∈N ϕne

iωnx, with
∑

n∈N |ϕn| < ∞ has a solu-
tion to (1) given by

u(t, x) =
∑
n∈N

an(t)e
iωnx (2)

where each function an(t) may be solved for explic-
itly by quadrature.

For an example, we consider monochromatic
initial data u0(x) = Aeix. For this solution, each
function an(t) is given by An/ω2(n−1), multi-
plied by a 2π/ω2 periodic function.
Given this geometric scaling, one may expect
that if the ratio is very small then the solution
will converge to a periodic orbit, and if the ra-
tio is very large then the solution will blowup.
This is indeed the case.

Theorem 4 ( [3]). Fix A ∈ C, ω > 0 and initial
data u0(x) = Aeiωx.

• If A/ω2 ≤ 3 then the solution is periodic with
period 2π/ω2.

• If A/ω2 ≥ 6 then the solution blows up in
finite time in the L2 norm.

The lower value of 3 was obtained by com-
puter assisted proof, and the upper value of 6
was obtained with pen-and-paper. Using non-
validated numerics we estimate that the criti-
cal dividing line between periodic orbits and
blowup is approximately A/ω2 ≈ 3.37.

Figure 2: A periodic solution with initial data
u0(x) = 3eix.

EQUILIBRIA & HETEROCLINIC ORBITS

By way of computer assisted proofs, we are able
to demonstrate existence of nontrivial equilib-
ria, and heteroclinic orbits between these non-
trivial equilibria and 0.

Theorem 5 ( [2]). There exist at least two non-
trivial equilibria to (1), each of whose linearization
has at least one unstable eigenvalue.

Figure 3: Validated heteroclinic orbit between equi-
libria

Theorem 6 ( [2]). For each equilibrium ũ in The-
orem 5, there exists a heteroclinic orbit ua travel-
ing from ũ to 0, and a heteroclinic orbit ub traveling
from 0 to ũ.

The heteroclinic ua is proved using validated
numerics in three steps.

(a) Construct a high order approximation of
the unstable manifold using the parame-
terization method [5–7].

(b) Use our validated integrator adapted
from [8] to propagate these solutions for-
ward in time.

(c) Integrate until the trajectory enters an ex-
plicit trapping region (an open set) of so-
lutions which converge to 0.

The heteroclinic ub follows from the time re-
versal symmetry of conjugate solutions. In [9]
we systematically study the long term behavior
of trajectories in the unstable set of an equilib-
rium.


