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Nonlinear Waves

Coherent structures (eg pulse solutions and traveling waves) are an
essential part of understanding nonlinear PDEs
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We prove existence and spectral stability of standing waves

Novel approach based on Maslov index (cf Evans functions)

This approach produces efficient numerics

. . . and computer assisted proofs!
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Reaction Diffusion System

Consider a reaction diffusion equation

ut = Duxx +∇G (u), u ∈ Rn x ∈ R

for diffusion matrix D and nonlinearity G ∈ C 2(Rn,Rn)
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Assume φ(x) : R → Rn is a stationary solution

For symmetric M(x) = ∇2G (φ(x)), one obtains the eigenvalue problem

λu = Duxx +M(x)u =: Lu, u ∈ Rn, x ∈ R

Note σ(L) = σess(L) ∪ σpt(L). σess(L) is easy σpt(L) is hard
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Gradient Nonlinearity & Symplectic Structure

Rewrite Lu = Duxx +M(x)u using a symplectic structure

Ux = JB(x ;λ)U U ∈ R2n J =
(

0 −Id
Id 0

)
λ ∈ R (1)

where J2 = −I , and we define U = (u,Dux) and the symmetric matrix

B(x ;λ) =
(
λ−M(x) 0

0 −D−1

)
For U,W ∈ R2n we define a symplectic form by

ω : R2n × R2n → R ω(U,W ) = ⟨U, JW ⟩

Symplectic Form is Preserved Under the Flow

If U(x) and W (x) solve
Ux = JB(x ;λ)U

then d
dxω(U(x),W (x)) = 0
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Eigenvalue Problem: A nonautonomous linear ODE

λ and a solution Ux = JB(x ;λ)U is an eigen-pair iff

lim
x→±∞

|U(x)| = 0

Define JB±(λ) := limx→±∞ JB(x ;λ)

Define Eu/s
± (x ;λ) as the space of solutions which are asymptotic to

the unstable (stable) eigenspace of JB±(λ) as x → ±∞

Figure: (MB) The spaces Eu
−(x ;λ) and Es

+(x ;λ) consist of solutions which go to
0 as x → −∞ and x → +∞ respectively.
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λ is an eigenvalue iff

Eu
−(x ;λ) ∩ Es

+(x ;λ) ̸= {0}

Mild Ansatz: JB±(0) is hyperbolic with n positive & n negative e-val

If φ is a wave, then (
φ′(x)

Dφ′′(x)

)
∈ Eu

−(x ; 0) ∩ Es
+(x ; 0)

Sturm Liouville Theory (n = 1)

One can count unstable eigenvalues by counting zeros of φ′(x)

How to generalize to systems?

Eu
−(x ;λ) is Lagrangian; ω(U,W ) = 0 ∀U,W ∈ Eu

−(x ;λ)
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The Lagrangian Grassmannian

Λ(n) :=
{
ℓ ⊂ R2n : dim(ℓ) = n, ω(U,W ) = 0 ∀U,W ∈ ℓ

}
Λ(n) has dimension n(n+1)/2 and has same Z2 homology as S1× · · ·×Sn

Figure: Cartoon picture of Λ(2), which is double covered by S1 × S2

π1(Λ(n)) = Z and Maslov Index measures the homotopy type of paths.

Λ(n) ∼= U(n)/O(n) and

det2 : U(n)/O(n) → S1 ⊆ C

induces an isomorphism of fundamental groups
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Conjugate Points

Define the Dirichlet subspace as D :=
{
(u, v) ∈ R2n : u = 0

}
Define the train of D as T :=

{
ℓ ∈ Λ(n) : ℓ ∩ D ≠ {0}

}

For fixed λ = 0, define conjugate points as values of x s.t. Eu
−(x ; 0) ∈ T

Theorem [BCJ+18]

The number of positive eigenvalues of L is equal to the number of
conjugate points
All conjugate points are in [−L−, L+] for some L−, L+ ∈ R
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How to Find Conjugate Points?

If the columns of A(x) =

(
A1(x)
A2(x)

)
span Eu

−(x) then A is said to be a

frame matrix

x ∈ R R2n×n

x ∈ R Λ(n)

A

Eu
−

Lemma

Eu
−(x ; 0) ∈ T ⇐⇒ detA1(x) = 0
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Our Numerical Methodology

1 Compute a stationary solution

2 Fix L− and prove Eu
−(x ; 0) /∈ T for x ∈ (−∞,−L−]

3 Fix L+ and calculate a frame matrix of Eu
−(x ; 0) for x ∈ [−L−, L+]

4 Prove Eu
−(x ; 0) /∈ T for x ∈ [L+,+∞)

5 Count all the conjugate points in [−L−, L+]

Paper [BJ22] & code [BJ21] are available
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Step 1: Compute a Connecting Orbit

Want to find a stationary solution φ(x) : R → Rn to

ut = Duxx +∇G (u)

Corresponds to a connecting
orbit ϕ = (φ,Dφx) to the
Hamiltonian ODE

H(v ,w) = 1
2∥D

−1w∥2 + G (v)

(v ,w)′ = −J∇H(v ,w)

Wu(p0) Ws(p1)

Suppose p0, p1 ∈ R2n are equilibria with equal energy H(p0) = H(p1)
Each with n-stable and n-unstable real eigenvalues in their linearization.

A lot of prior work on the subject w/ computer assisted proofs.
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Step 2: How to define A(x), a frame matrix for Eu
−(x ; 0)?

Let vk be the unstable e-vectors of JB−. Then

lim
x→−∞

Eu
−(x) = span{v1, . . . vn}

There exist eigenfunctions Vk : (−∞,−L−] → R2n such that

V ′
k = JB(x ; 0)Vk ,

∥∥∥Vk(x)e
−λkx − vk

∥∥∥
L∞

(
(−∞,−L−],R2n

) < ϵ

Use exponential dichotomies!

Eu
−(x) has a frame matrix

A(x) =

 V1(x) · · · Vn(x)
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Step 2: Defining the frame matrix A(−L−)

Let Vu
−,Vs

− denote frame matrices for the (un)stable eigenspace of JB−.

For fixed L− ≥ 0, compute error bounds E for a frame matrix of Eu
−(−L−)

A(−L−) = Vu
− + E

= Vu
− + Vu

−Eu + Vs
−E s

Choose L− ≫ 1 s.t. no conjugate pts for x ∈ (−∞,−L−]
Error bounds in the unstable eigen-directions will grow exponentially!
We multiply by an invertible matrix to get a new frame matrix

Ã(−L−) = (Vu
− + E)(I + Eu)−1

= Vu + VsE s(I + Eu)−1

Now all the error terms are in the (asymptotically) stable eigen-directions
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Step 3: Defining A(x) for x ∈ [−L−, L+]

Fix L−, L+ and initial frame matrix

A(−L−) = Vu + VsE s(I + Eu)−1

Define A(x) by integrating the columns forward according to

Ux = JB(x ;λ)U, U ∈ R2n

where φ(x) is a connecting orbit &

B(x ;λ) =
(
−∇2G (φ(x)) 0

0 −D−1

)
Λ(n) is compact, but frame matrices are not; solutions grow
exponentially large

We use the CAPD library [KMWZ20] for rigorous integration
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Step 4: Proving there are no conjugate points past L+

Consider flow on Λ(n) induced by U̇ = JB+U,

Fixed points in Λ(n) are subspaces spanned by e-vectors of JB+

Unstable e-space Eu
+∞ of JB+ is stable under the flow

Derivative of the wave is an e-function, so

lim
x→+∞

Eu
−(x ; 0) ∩ Es

+∞ ̸= {0}

limx→+∞ Eu
−(x ; 0) is unstable under the flow!

Instead of proving Eu
−(L+; 0) ∈ Λ(n) is sufficiently close to it’s limit

point, it suffices to show it is sufficiently far away from D.
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Step 5: Counting Conjugate Points

Number of conjugate points equals number of positive e-values

All conjugate points are in [−L−, L+]

x

Figure: Graph of detA1(x) with two
conjugate points

Consider frame matrix of
Eu
−(x),

A(x) =

(
A1(x)
A2(x)

)
Define

F (x) = detA1(x)

Find all x ∈ [−L−, L+]
such that F (x) = 0
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Results: Coupled Bistable Equations

Consider the (uncoupled) scalar reaction diffusion equation

ut = uxx +∇G (u), u ∈ R1 x ∈ R

where

G (u)= −1

4
bu2(1− u)2, b ∈ R

The resulting PDE is

∂tu = ∂2
xu + b f (u)

where f is given by

f (u) = u(u − 1
2)(1− u)

Equilibria 0 and 1 have equal energy for all b

This has an explicit stable front

ϕ0(x ; b) :=
1

1 + e−x
√

b/2
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Consider ut = uxx +∇G (u), u ∈ Rn x ∈ R where

G (u1, . . . , un) = − 1
4

∑
1≤i≤n

biu
2
i (1− ui )

2

− 1
2

∑
1≤i≤n−1

ci,i+1ui (1− ui )ui+1(1− ui+1).

with parameters b ∈ Rn, c = {ci,i+1}n−1
i=1 ∈ Rn−1.

For n = 3, this becomes

∂tu1= ∂2
xu1 + b1f (u1) + c12g(u1, u2)

∂tu2= ∂2
xu2 + b2f (u2) + c12g(u2, u1) + c23g(u2, u3) (2)

∂tu3= ∂2
xu3 + b3f (u3) + c23g(u3, u2),

where f , g are given by

f (u) = u(u − 1
2 )(1− u) g(u,w) = w(1− w)(u − 1

2 ).

Equilibria (0, 0, 0) and (1, 1, 1) have equal energy for all b, c
For the uncoupled case c = 0 this has an explicit front w/ triple 0 e-val

Φ0(x) = (ϕ0(x ; b1), ϕ0(x ; b2), ϕ0(x ; b3))
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Results: Coupled Bistable Equations

Theorem with computer assisted proof [BJ22]

Fix the parameter b = (b1, b2, b3) = (1, .98, .96)
At each of the four parameter combinations

c±,± = (±c12,±c23) = (±.04,±.02)

there exists a standing wave solution φ±,± to (2) such that

lim
x→−∞

φ±,±(x) = (0, 0, 0), lim
x→+∞

φ±,±(x) = (1, 1, 1).

Furthermore, there are exactly

0 positive eigenvalues in the point spectrum of φ−,−.

1 positive eigenvalue in the point spectrum of both φ+,− and φ−,+.

2 positive eigenvalues in the point spectrum of φ+,+.
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Conclusion

Validated computation of spectral stability via conjugate points

Less computation than Evans function

With the Evans function one computes Eu
−(x ;λ) for an

entire contour of λ ∈ C
Less information than Evans function

Gives total number (not value) of positive e-values

Future Work

Extending the technique for the Swift-Hohenberg equation w/
Margaret Beck & Hannah Pieper
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