
Math 876: PDE Seminar 2022

Week 11: Robustness of Exponential Dichotomies
April 12 & 14, 2022

General:
We continue our study of exponential dichotomies, obtaining powerful theorems which

show that exponential dichotomies are robust to “small” perturbations B : R → L(V 2β,W ).
There is a heavy dose of sarcasm in saying these perturbations are small. We don’t require
B → 0 as t → ±∞ and moreover B(t) may be an unbounded operator if we consider it in
L(W,W )! This level of generality is not without motivation: it’s what is needed to study
the stability of periodic orbits in PDEs like Navier-Stokes.

The key ingredients which allow us to call these maps “small” are the various topologies
Tbo, TA on the spaces Mp,M∞ we introduced in §4.4. Furthermore the proofs in these
sections have quite a different flavor to them; it’s not our standard fare of variation of
constants and Gronwall’s lemma!

It is essential that we understand (linear) exponential dichotomies before moving on to
(nonlinear) invariant manifolds. We’ll be studying the Burgers-Sivashinsky in the homework
for the next few weeks as a toy example to apply all the theory we’ve been building up. This
week we’ll work out some foundational estimates.

Primary Reading:
§4.5.3-4.5.4: Robustness of Exponential Dichotomies

Secondary Reading: Read the following material to see how the stage is being set
to tackle the proofs of stable/unstable/center manifolds.

� §7.1.1 Up to 466: Local dynamics near an equilibrium

� Preparation Lemma 47.10

Important Concepts: Strong boundedness properties; relation between discrete
and continuous exponential dichotomies; robustness of exponential dichotomies; prepared
nonlinearities; local coordinates and the error term E.

Reading Questions: Email me at least 3 questions on the reading at least an hour
before class on Tuesday.

Presentations:

Graph Transforms and Strong Boundedness (Tu):
Present Theorem 45.8, starting by explaining what this operator G is what it is used for.

(Can you compute what G is in the Marcus Yamabe example for the time-2π map?). Then



try to sketch out the intuition behind the proof without getting caught up in the smaller
details.

Robustness of Exponential Dichotomies (Tu):
Tell us about the Robustness of Exponential Dichotomies (Theorem 45.11) and explain

what is going on in Figure 4.3. There are a lot of different spaces floating around with
different geometries/topologies. Try to give a big picture presentation of what is going on
without getting caught up in the smaller details.

Problems:

#1 Strong Boundedness Property.
Do book problem # 45.13 (Prove Lemma 45.9).

#2 Partially Coupled Systems.
Do book problem # 45.17 (1), (2), (4) studying partially coupled systems. Note: One

place partially coupled systems come up is in the Galerkin approximation W = WN × W∞
where WN

∼= RN .

#3. Burgers-Sivashinsky Equation
Fix the Hilbert space H = L2

per,sym(−π, π) subject to periodic and odd boundary condi-
tions:

u(t, x) = −u(t,−x), u(t, x) = u(t, x+ 2π). (1)

Remark 1. Alternatively, we can work with a weighted Wiener algebra; for a number s ≥ 0
and u ∈ H we define a norm

∥u∥As =
∑
n∈Z

(1 + |n|)s|û(n)|, û(n) =
1

2π

∫
[−π,π]

u(x)e−inx,

for s ≥ 0. We define the weighted Wiener algebra As ⊆ H to be the set of functions u with
∥u∥As < ∞.

For s ∈ N we have Cs,0 ⊆ As ⊆ Cs,1. Furthermore the space As is a Banach algebra, and
is isomorphic via the Fourier transform to our familiar space ℓ1s.

In anycase, let W be your favorite Banach space between the choices of L2
per,sym(−π, π)

and A0. Define the sectorial operator A = −ν∂xx for ν > 0 defined on W , whereby σ(A) =
{νk2}∞k=1 and ∥e−At∥L(W,W ) ≤ e−νt.

Furthermore, let V 2α denote the fractional power spaces generated by A. If you chose
W = L2, then we’d have V 2α ∼= Hα

per,sym((−π, π),R) ∼= ℓ2α. Alternatively, if you chose
W = A0, then we’d have V 2α ∼= Aα

∼= ℓ1α.
Consider the forced, viscous Burgers-Sivashinsky equation:

ut − ν∂xxu = λu+ (∂xu)u− f(x)︸ ︷︷ ︸
=:F (u)

, (2)



where we define the forcing term:

f(x) = β (λ− ν) sin(x) + 1
2
β2 sin(2x).

There are three parameters to the problem: λ, β, and ν. The λ term is adding instability to
the dynamics about zero; ν is the viscosity which can make the higher modes decay slower
or faster, and β determines how far away from the “flat” dynamics about 0 that we will be
looking.

1. Show that functions represented by sine series are an invariant subspace of solutions in
(2). That is, show that if u ∈ V 1 satisfies the boundary conditions (1), then it can be
represented by a sine series u(t, x) = 2

∑
k∈Z ak(t) sin(kx) where ak : [0, T ) → R and

ak(t) = −a−k(t). Furthermore, show that ∂xxu + F (u) can be represented by a sine
series.

2. Show that (2) has an equilibrium point u0 ∈ V 1 given by

u0(x) = β sin(x) = β
∞∑

k=−∞

iake
ikx, (3)

where a±1 = ∓(2)−1, and ak = 0 otherwise.

3. Define the maps B = DF (u0) ∈ L(V 1,W ) and L = A−B. Then localize the equation
so that it is in the form like equation (71.7) in the book:

∂tv + Lv = E(u0, v) (4)

In the case where W = A0, explicitly describe the map L and the function E. This will
have a nice formula in terms of discrete convolutions, although things get a bit messy
when you look at each component.

4. Suppose that
√

λ/ν ̸∈ N. Show that if β > 0 is sufficiently small then e−Lt has an
exponential dichotomy on W .

Problems for Next Week:
The following problems continue our study of the Burgers-Sivashinski equation. If you’ve

finished all the previous problems, you can start working on these ones.

1. Show that E ∈ C1
Lip(V

1,W ); for δ > 0, there exists constants C0(δ), C1(δ) > 0 such
that

sup
∥v∥≤δ

∥E(v)∥W ≤ C0∥v∥V 1 (5)

sup
∥v1∥,∥v2∥≤δ

∥E(v1)− E(v2)∥W ≤ C1∥v1 − v2∥V 1 (6)

How does this change if we replace E by the prepared nonlinearity Ea (cf Lemma
47.10).



2. Suppose ν−1, λ, β > 0 are small. Use Gronwall’s Lemma and a preparation of the
nonlinearity as in Lemma 47.10 to show that there are some δ,K, µ > 0, such that

∥v1(t)∥V 1 ≤ Ke−µt∥v1(0)∥V 1 , t ≥ 0 (7)

∥v1(t)− v2(t)∥V 1 ≤ Ke−µt∥v1(0)− v2(0)∥V 1 , t ≥ 0 (8)

whenever v1, v2 are a mild solutions of (4) with ∥v1(0)∥V 1 , ∥v2(0)∥V 1 ≤ δ.

3. Compute a finite dimensional approximation of the operator L = −A + B using the
methods from the homework in week 3. In particular, for M ∈ N, define the projection
πM : ℓ2α → RM and the inclusion ιM : RM → ℓ2α by

πM(a) = (i−1a1, i
−1a2, . . . , i

−1aM) ιM(a) = (. . . 0,−ia−M , . . . iaM , 0 . . . )

Then define the finite dimensional operator LM : RM → RM by

LM = πM(−A+B)ιM

Write computer code to compute this matrix LM for given values of M , ν and β.

4. For parameters λ = 0.1, β = 0.2, ν = 0.1, and M = 16, compute LM . What are the
few eigenvalues with the largest real part? Plot the corresponding eigenfunctions. How
do these features change if you increase M to 64 or 256? What happens if you change
to the parameter λ = 0.2?


