
Math 876: PDE Seminar 2022

Week 12: Local Dynamics Near an Equilibrium
April 19 & 21, 2022

General:
The goal in this section is to separate the stable dynamics from the unstable dynamics in

a nonlinear flow, and in order to obtain a positive/negative invariant set, we need to control
the trajectories for a semi-infinite amount of time.

We did this in §4.5 using exponential dichotomies when the equations were linear (albeit
potentially nonautonomous and inhomogeneous). In §4.6-§4.7 we were able able to deal
general nonlinear equations for a short amount of time. If the nonlinearity was globally
Lipschitz, we proved solutions existed for all forward time. In §5.1, if we obtained global
existence with the help of energy estimates and Lyapunov functions.

To prove the stable/unstable manifold theorem for generic hyperbolic equilibria and
generic nonlinearities, we will combine all of the tools we’ve learned this semester. Like
in §4.6-4.7, we’ll try to apply a contraction mapping theorem to a variation of constants
formula which treats the nonlinearity like an inhomogeneous forcing. Then we will apply
our results on exponential dichotomies from §4.5 to pick out the stable/unstable sets. (Note
we only need to deal with the autonomous case; the set K = {u0} is just a point!) There still
remains a difficulty with the nonlinearity not being globally Lipschitz, but we’ll take care of
this using the preparation lemma.

There are a lot of moving parts but we’ve seen them all before. Now we just have to put
them together!

Primary Reading: All of §7.1.1.

Secondary Reading: Preparation Lemma 47.10

Important Concepts: Saddle Point Property; Lyapunov-Perron method.

Reading Questions: Email me at least 3 questions on the reading at least an hour
before class on Tuesday.

Presentations:

Saddle Point Property (Tu): Present the proof of Lemma 71.2 for the unstable
manifold. (3 presenters, 15 minutes each?)

� Introduce us to the Lyapunov-Perron operator (71.20); pages 467-first paragraph of
page 468. Introduce necessary notation/variables, and explain the intuition for why T
is the right operator to define.

� Present the proof showing that T maps Fρ into Fρ and that it is a contraction mapping;
pages 468-469.



� Present the rest of the proof for the unstable manifold; page 470-471.

Part #1. Burgers-Sivashinsky Equation: Foundations and Dichotomies

Fix the Hilbert space H = L2
per,sym(−π, π) subject to periodic and odd boundary condi-

tions:

u(t, x) = −u(t,−x), u(t, x) = u(t, x+ 2π). (1)

Remark 1. Alternatively, we can work with a weighted Wiener algebra; for a number s ≥ 0
and u ∈ H we define a norm

∥u∥As =
∑
n∈Z

(1 + |n|)s|û(n)|, û(n) =
1

2π

∫
[−π,π]

u(x)e−inx,

for s ≥ 0. We define the weighted Wiener algebra As ⊆ H to be the set of functions u with
∥u∥As < ∞.

For s ∈ N we have Cs,0 ⊆ As ⊆ Cs,1. Furthermore the space As is a Banach algebra, and
is isomorphic via the Fourier transform to our familiar space ℓ1s.

In anycase, let W be your favorite Banach space between the choices of L2
per,sym(−π, π)

and A0. Define the sectorial operator A = −ν∂xx for ν > 0 defined on W , whereby σ(A) =
{νk2}∞k=1 and ∥e−At∥L(W,W ) ≤ e−νt.

Furthermore, let V 2α denote the fractional power spaces generated by A. If you chose
W = L2, then we’d have V 2α ∼= Hα

per,sym((−π, π),R) ∼= ℓ2α. Alternatively, if you chose
W = A0, then we’d have V 2α ∼= Aα

∼= ℓ1α.
Consider the forced, viscous Burgers-Sivashinsky equation:

ut − ν∂xxu = λu+ ∂x(u
2)− f(x)︸ ︷︷ ︸

=:F (u)

, (2)

where we define the forcing term:

f(x) = β (λ− ν) sin(x) + 1
2
β2 sin(2x).

There are three parameters to the problem: λ, β, and ν. The λ term is adding instability to
the dynamics about zero; ν is the viscosity which can make the higher modes decay slower
or faster, and β determines how far away from the “flat” dynamics about 0 that we will be
looking.

1. Show that functions represented by sine series are an invariant subspace of solutions in
(2). That is, show that if u ∈ V 1 satisfies the boundary conditions (1), then it can be
represented by a sine series u(t, x) = 2

∑
k∈Z ak(t) sin(kx) where ak : [0, T ) → R and

ak(t) = −a−k(t). Furthermore, show that ∂xxu + F (u) can be represented by a sine
series.



2. Show that (2) has an equilibrium point u0 ∈ V 1 given by

u0(x) = β sin(x) = β
∞∑

k=−∞

iake
ikx, (3)

where a±1 = ∓(2)−1, and ak = 0 otherwise.

3. Define the maps B = DF (u0) ∈ L(V 1,W ) and L = A−B. Then localize the equation
so that it is in the form like equation (71.7) in the book:

∂tv + Lv = E(u0, v) (4)

In the case where W = A0, explicitly describe the map L and the function E. This will
have a nice formula in terms of discrete convolutions, although things get a bit messy
when you look at each component.

4. Suppose that
√

λ/ν ̸∈ N. Show that if β > 0 is sufficiently small then e−Lt has an
exponential dichotomy on W .

Part #2. Burgers-Sivashinsky Equation: Linearization Far from 0

(a) For M ∈ N, define the projection πM : ℓ1α → RM and the inclusion ιM : RM → ℓ1α by

πM(a) = (i−1a1, i
−1a2, . . . , i

−1aM) ιM(a) = (. . . 0,−iaM , . . . iaM , 0 . . . )

Use this to write a projected ODE for (4); ∂tx+LMx = EM(x) where EM : RM → RM

with EM(x) = πME(ιM(x)). What is this in the case M = 2?

(b) Compute a finite dimensional approximation of the operator L = −A + B using the
methods from the homework in week 3. That is, define the finite dimensional operator
LM : RM → RM by

LM = πM(−A+B)ιM

Write computer code to compute this matrix LM for given values of M , ν and β.

(c) For a large variety of parameters λ, β, ν,M compute LM and its eigenvalues. How are
the eigenvalues affected by the parameters?

Short Mathematica exercise
Consider the system

ẋ = −x+Ry − xy (5)

ẏ = −4y + x2 (6)

The origin is a stable equilibrium for all values of R > 0. How does the basin of attraction
of the origin change as you vary R? How should this affect the way we choose our prepared
nonlinearity? (Explore the system using numerics; don’t write a formal proof)



Part #3. Burgers-Sivashinsky Equation: Neighborhood of stability
For this problem we are going to set β = 0 and ν = 1. In Fourier space, this becomes:

∂tak = (−k2 + λ)ak − k
2
(a ∗ a)k (7)

with a ∈ ℓ11, ak = −a−k ∈ R for k ∈ Z.

1. Suppose λ = 0. Find explicit values ρ,K, µ > 0 such that

∥u1(t)− u2(t)∥V 1 ≤ Ke−µt∥u1(0)− u2(0)∥V 1 , t ≥ 0 (8)

whenever u1, u2 are a mild solutions of (4) with ∥u1(0)∥V 1 , ∥u2(0)∥V 1 ≤ ρ.

2. (Optional) Suppose λ = 2.1 Write out what the Lyapunov-Perron operator is using
the basis from ℓ11. Explicitly describe the domain/range of T so that it is not just
a formal definition. Note that T is great for applying estimates, but ugly for doing
computations.

1I am not sure if my λ matches up exactly with what is in the book; it might be off by a sign.


