
Math 876: PDE Seminar 2022

Week 13: Bifurcations and Center Manifolds
April 26, 28, May 3, 2022

General:
Understanding bifurcations and the dynamics on center manifolds is difficult; the taxon-

omy of bifurcations is quite varied, the objects of interest are fundamentally nonlinear, and
have fewer nice properties (eg uniqueness, smoothness). All of these problems are present in
ODEs. Generalizing the theory to PDEs is not significantly harder than how we generalized
the theory for stable/unstable manifolds. All in all, there are a lot of complicated things to
keep track of.

Rather than try and do a broad treatment of the subject, we are going to a deep dive into
a pitchfork bifurcation in the Burgers-Sivashinski equation: first in the finite dimensional
Galerkin projection, and then treating the infinite dimensional PDE.

Primary Reading: §7.1.2, §7.2.

Secondary Reading: §7.1.3 and Chapter 4.2 of Carmen Chicone’s book “Ordinary
Differential Equations with Applications”.

Tertiary Reading: To round out our study through the book, I’d recommend taking
a look at §7.3 on periodic orbits and §8.1, §8.6 on inertial manifolds.

Important Concepts: Center manifolds are not unique; pitchfork bifurcation; gra-
dient systems; Lyapunov-Schmidt reduction; center manifold reduction; Morse index; Morse
decomposition.

Reading Questions: Email me at least 3 questions on the reading at least an hour
before class on Tuesday.

Presentations:

Center Manifolds: Tell us about the the center manifold theorem §7.1.2. How do
these results compare with what we get from the (un)stable manifold theorems? What is
this reduction principle?

Gradient Systems: Tell us about gradient systems and Theorem 72.1. Can a gradient
system have a periodic orbit?

Morse Decompositions: Tell us about Morse decompositions and Theorem 72.3.
For an example, describe Morse decompositions of the system:

ẋ = x− x3

ẏ = −2y



Problems:
We continue our study of the Burgers-Sivashinsky Equation:

ut − ∂xxu = λu+ 1
2
∂x(u

2)

We can write odd periodic solutions in terms of a Fourier-sine series

u(t, x) = −2
∞∑

k=−∞

ak(t) sin(kx) =
∞∑

k=−∞

iak(t)e
ikx, (1)

where ak : [0,+∞) → R and ak(t) = −a−k(t). Plugging in we obtain an equation in Fourier
space:

∂tak = −k2ak︸ ︷︷ ︸
(−Aa)k

+λak − k
2
(a ∗ a)k︸ ︷︷ ︸

Fλ(a)k

(2)

with a ∈ C([0, T ), ℓ11), ak = −a−k ∈ R for k ∈ Z. Due to the odd-symmetry, we can restrict
to an isomorphic space of one sided sequences. That is, for {ak}∞k=0, {bk}∞k=0 ∈ ℓ1s,N

∼= ℓ1s,odd,
we define

∥a∥ℓ1s,N = 2
∞∑
n=1

|k|s|ak|

(Note that a0 = 0.) With this norm, the space of one sided sequence is a Banach algebra; that
is ∥a ∗ b∥ℓ1s,N ≤ ∥a∥ℓ1s,N∥b∥ℓ1s,N where we define the discrete convolution as a ∗ b = {(a ∗ b)n}∞n=0

(a ∗ b)n =
∑

k1+k2=n
k1,k2∈Z

ak1bk2 =
n∑

k=0

an−kbk +
∞∑
k=1

an+kb−k + a−kbn+k

=
n∑

k=0

an−kbk −
∞∑
k=1

an+kbk + akbn+k

We will also be looking at the 2-mode Galerkin projection:

∂ta1 = (−12 + λ)a1 − 1
2
(−2a1a2)

∂ta2 = (−22 + λ)a2 − 2
2

(
a21
)

(3)

#1 Lyapunov–Schmidt reduction: ODEs
The Morse index of a hyperbolic equilibrium is defined as the dimension of the unstable

eigenspace in its linearization. When a supercritical pitchfork bifurcation occurs, the Morse
index of an equilibrium u0 increases by one, and two new equilibria u± are born having the
same Morse index that u0 used to have. In general, if the bifurcation occurs at parameter λ0

then the ‘amplitude’ grows like ∥u± −u0∥ = O(
√
λ− λ0). Since square roots are unpleasant



to work, often one will unfold the bifurcation; fix the amplitude ∥u± − u0∥ = ϵ, then solve
for λ− λ0 = O(ϵ2). This is the essence of the Lyapunov–Schmidt reduction.

Fix the space X = R × (ℓ1s/R) and consider an element b = (λ0, b2, b3, . . . ) ∈ X. Define
the function Fϵ : X → ℓ1s−2 by

Fϵ(b) =


1

ϵ3
(−Aã+ Fλ(ã))1 if k = 1

1

ϵ2
(−Aã+ Fλ(ã))k if k ̸= 1

where we define λ = 1 + ϵ2λ0 and we define ã ∈ ℓ1s as

(ã1, ã2, ã3, . . . ) = (ϵ, ϵ2b2, ϵ
2b3, . . . )

We can use Fϵ to study the equilibria of (2); if ϵ ̸= 0 then Fϵ(b) = 0 ⇐⇒ Fλ(ã) = 0.

1. Define the projection map πM : X → RM and an inclusion map ιM : RM → ℓ1s by

πM(λ0, b2, . . . bM , . . . ) = (λ0, b2, . . . , bM)

ιM(λ0, b2, . . . , bM) = (λ0, b2, . . . bM , 0, . . . )

Write out the function FM
ϵ = πMFϵ for the ODE system in (3). Then find some

b̄M ∈ R2 such that FM
ϵ (b̄M) = O(ϵ).

2. Fix M = 2 (or more generally M ≥ 2). Use the implicit function theorem to prove that
there exists some ϵ0 > 0 and there exists some b̂M = b̂M(ϵ) ∈ RM with ∥b̄M − b̂M∥ =
O(ϵ) and FM

ϵ (b̂M) = 0 for all 0 < ϵ < ϵ0. Thereby ∥āM−âM∥ = O(ϵ3) and FM
λ̂
(âM) = 0

for all 0 < ϵ < ϵ0.

#2: Center manifold reduction: ODEs
Consider the extended 2-mode Galerkin projection:

∂tλ = 0

∂ta1 = (−12 + λ)a1 − 1
2
(−2a1a2)

∂ta2 = (−22 + λ)a2 − 2
2

(
a21
)

(4)

In general, center manifolds are not unique. Nevertheless φ will, in general, have a unique
Talyor series, and the globally bounded orbits on the center manifold are unique.

Note that from the reduction principle we have

∂tξ + Lξ = RE(u0, ξ + φ(ξ)).

Writing λ = 1 + λ̃0, for (4) this becomes

∂tλ̃ = 0

∂ta1 = λ̃a1 + a1φ(λ̃, a1).



By the chain rule, we have

∂tφ(λ̃, a1) =
[
∂λ̃φ(λ̃, a1) ∂a1φ(λ̃, a1)

]
·
[
∂tλ̃
∂ta1

]
= ∂a1φ

(
λ̃a1 + a1φ

)
(5)

Since a2 = φ(ξ) then by plugging into (4) we also obtain

∂tφ(λ̃, a1) = (−3 + λ̃)φ(λ̃, a1)− a21 (6)

Equating (5) and (6), we obtain the following conjugacy equation, which is a first order
PDE:

(−3 + λ̃)φ− a21 = (∂a1φ)
(
λ̃a1 + a1φ

)
(7)

This equation is enforcing an invariance condition. To solve this PDE, we can make an
ansatz that we can write φ as a power series plus another function:

φ(λ̃, a1) =

(
N∑

m+n=2

pm,nλ̃
man1

)
+ h(λ̃, a1) (8)

where ∂m
λ̃
∂n
a1
h(λ̃, a1) = 0 for all |(m,n)| ≤ N . By plugging (8) into the conjugacy equation

(7), we can try to solve for the coefficients pm,n for increasing orders of |(m,n)| = m+ n.
Warning! Without addition work this method is not going to lead us to a proof of a

center manifold theorem. For that we need to use other techniques, like those in Theorem
71.4 for example. These two approaches should be seen as complementary tools that, when
used together, paint a more detailed picture of the center manifold. Theorem 71.4 guarantees
that a center manifolds does exist and there is hope to write it as a graph, and by solving
for the coefficients pm,n we are able to approximation this graph and actually compute the
dynamics on the center manifold.

(a) Show that the system in (4) has an exponential trichotomy with P = 0, dimR = 2,
and codim(Q) =2. Show that there exists a local center manifold M o

loc given as the
graph of Lipschitz mapping ξ = (λ, a1) 7→ ξ + φ(ξ).

(b) Solve for the coefficients pm,n for |(m,n)| ≤ 2.

(c) Show that the reduced equation for the center manifold is

∂tλ̃ = 0

∂ta1 = λ̃a1 −
1

3
a31 + higher order terms

This is also referred to as the normal form of the bifurcation.



(d) For λ̃ > 0, define the one dimensional submanifold

M o,λ̃
loc = {(µ, a1, a2) ∈ M o

loc : µ = λ̃}

Show that there exists some λ̃0, such that for all 0 < λ̃ < λ̃0, the set M
o,λ̃
loc has a Morse

decomposition

K0 = {u+, u−}, K1 = {0}

(e) Show that for 0 < λ̃ < λ̃0 the set Aλ̃ = ω(K1) ⊆ M o,λ̃
loc is an attractor for (3). Then show

that there is some neighborhood aboutM o,λ̃
loc for which K0,K1 is a Morse decomposition.

#3 Lyapunov–Schmidt reduction: PDEs
Repeat problem #1 for the full Burgers-Sivashinsky Equation. If you have any questions,

you are more than welcome to come talk to me or your classmates!

#4: Center manifold reduction: PDEs
Repeat problem #2 for the full Burgers-Sivashinsky Equation. If you have any questions,

you are more than welcome to come talk to me or your classmates!

#5: Bifurcation Diagram Make a sketch of what you think the bifurcation diagram
for the Burgers-Sivashinsky equation looks like for λ ∈ R. How would this compare with a
bifurcation diagram where we fix λ = 1 and let ν → 0? Make a prediction of what you think
the Morse decomposition looks like.


