
Math 876: PDE Seminar 2022

Week 2: Dynamical Systems: Basic Theory
February 1 & 3, 2022

General: This week we start the Sell & You book. In contrast to the intentionally
informal and ad hoc reading from last week, Sell and You give a very mathematically precise
presentation of the material. One of their goals in this book is to give a unified theory for
the dynamics of evolutionary equations. A downside of this, however, is that the book can
sometimes come off as overly abstract, and one can be left wanting for examples.

Chapter 2 introduces many many definitions. The first time you are reading the chapter,
I would recommend skipping the proofs of the theorems and lemmas. Not a ton of examples
are covered in this chapter (or rather they are delayed until later). To compensate, the
homework focuses on concrete examples. The last two problems are numerical, and continue
with the Galerkin approximation, and you’ll explore the dynamics arising in these finite
dimensional ODEs.

Required Reading: Sell & You §2.1- §2.3.4

Supplementary Reading: Sell & You, §2.3.7, and Appendix A.6

Important Concepts: Semiflows and semi-groups; Continuity Lemma; Invariant sets;
Alpha and omega limit sets; Compact semi-flows; Attractors; Point dissipative; Lyapunov
stability

Reading Questions: Email me at least 3 questions on the reading at least an hour
before class on Tuesday.

Presentations:

Semiflows (Tu): Tell us about §2.1.1-§2.1.2 on semiflows, invariant sets and limit sets.
What is the take-away message from the Characterization Lemma 21.4? What dynamical-
systems issues are there when working with semi-flows that aren’t present when working with
flows? A lot of definitions are introduced in these sections. Many should seem familiar from
finite dimensional dynamical systems, but adjustments have been made to work with semi-
flows. Prepare HW 1 for Thursday, which looks at examples for several of these definitions.

Attractors (Tu): Tell us about §2.3.0-§2.3.4 on attractors and their properties. Again,
a lot of definitions are introduced. Try to summarize all the named theorems/lemmas, such
as Stability Theorem 23.10. A thumbnail sketch of §2.3 is given in §2.3.7 although that goes
a bit beyond what we cover this week.

Numerics (Th): Do the Dynamics of the Galerkin Approximation problems for the
Allen-Cahn equation.



Problems:

1. Semi-flow for the heat equation: For a periodic function u : [0, 2π] → R
consider a solution to the heat equation

∂tu = ∂xxu

with initial data u ∈ L2([0, 2π],R) given by

u0(x) =
∑
k∈Z

ake
ikx

where {ak}k∈Z ∈ ℓ2. As we saw in Uecker (2009), this has solution

u(t, x) =
∑
k∈Z

e−t|k|2ake
ikx, t ≥ 0.

Define the mapping σ̂ : ℓ2 × [0,∞) → ℓ2 by

σ̂(a, t) =
{
e−t|k|2ak

}
k∈Z

, (1)

where a ∈ ℓ2 and t ≥ 0.

(a) Show that σ̂ is a continuous semi-flow on ℓ2. Is it a semi-group? Can it be extended
to be a flow (and not just a semi-flow)?

(b) Let F denote the Fourier transform. Define the map σ(u0, t) : L
2 × [0,∞) → L2 by

σ(u0, t) = F−1σ̂(F(u0), t). (2)

Show that S is a continuous semi-group on L2.

(c) Define a set B = {a ∈ ℓ2 : ∥a∥ℓ2 ≤ 1}. Compute the alpha limit set and the omega
limit set of B. Is B an invariant set? A positively invariant set? What are some points
in B with a globally defined motion? Does B contain an invariant set?

2. Compact imbeddings of weighted spaces
When working with partial differential equations it is common to consider function spaces

with varying degrees of regularity. The space continuously differentiable functions are a
prototypical example:

Cs(Td,R) :=
{
f : Td → R : (∂x)

sf is continuous
}
, ∥f∥Cs :=

s∑
r=0

sup
x∈Td

∣∣f (r)(x)
∣∣ (3)



where Td = (R/2πZ)d. Sobolev spaces generalize this concept in the context of Lp spaces.
When working with the discrete Fourier transform, one can work with weighted sequence
spaces1 such as

ℓ1s,d :=
{
{an}n∈Zd : an ∈ C, ∥a∥ℓ1s,d < ∞

}
, ∥a∥ℓ1s,d :=

∑
n∈Zd

(1 + |n|)s|an|,

where for n = (n1, . . . nd) ∈ Zd we define |n| = |n1| + · · · + |nd|. More generally, we may
define a norm

∥a∥ℓps,d =

{(∑
n∈Zd(1 + |n|p)s|an|p

)1/p
if p ̸= ∞

supn∈Zd(1 + |n|)s|an| if p = ∞

These spaces of varying degrees of regularity imbed inside of each other.

(a) Prove the following statements

(i) The Fourier transform F : Cs(Td,R) → ℓ∞s,d is a continuous imbedding.

(ii) The inverse Fourier transform F−1 : ℓ1s,d ↪→ Cs(Td,R) is a continuous imbedding.

(iii) The inclusion Cs+1(Td,R) ↪→ Cs(Td,R) is a compact imbedding.

(iv) If ϵ > 0 and d = 1 then the inclusion ℓps+ϵ,d ↪→ ℓps,d is a compact imbedding. What
about other values of d?

(v) If δ > 1 and d = 1 then the inclusion ℓ∞s+δ,d ↪→ ℓ1s,d is a compact imbedding. What
about other values of d?

(b) Show that σ̂ defined in the previous problem is a compact semi-flow on ℓ20,1. Find some
t0 so that σ̂ is compact for t > t0.

3. More examples of semi-flows: For each property below, construct a semi-flow
on ℓ2 ≡ ℓ20,1 with the given property.

(a) The semi-flow can be extended to be a flow.

(b) The semi-flow is nonlinear.

(c) The exists a set A ⊆ ℓ2 which is a global attractor for the semi-flow.

(d) The semi-flow is point dissipative.

NOTE: You don’t have to come up with a different semi-flow for each property, nor do you
need to come up with a single semi-flow satisfying every property.

4. Dynamics of the Galerkin Approximation: Fisher-KPP equation

1To my knowledge, the arrangement of subscripts and superscripts on ℓ isn’t completely standardized in
the literature.



Consider the Fisher-KPP equation with Neumann boundary conditions:

∂tu = ∂xxu+ λu(1− u), 0 = ∂xu(t, 0) = ∂xu(t, π). (4)

Using the Galerkin method, we look for approximate solutions of the form

ū(t, x) = a0(t) + 2
N∑
k=1

ak(t) cos(kx), (5)

yielding an N+1 dimensional ODE (c.f. the reading and homework from Week 1).

(a) Fix λ = 0.5, and study the dynamics of the Galerkin approximation to Fisher’s equation
with N = 1 (a 2 dimensional ODE). For example: What are the invariant sets? Are
there local attractors? Is there a global attractor?

NOTE: Just use numerics to make conjectures about the dynamics. Don’t worry about
constructing a mathematical proof. I would recommend Mathematica’s StreamPlot

function, but use whatever software you feel most comfortable with.

(b) Fix some random initial condition (a0, a1). Numerically compute the solution with this
initial condition and plot it three different ways:

(i) Plot the graph of the solution given by the Galerkin approximation in (5).

(ii) Plot the trajectory through (a0, a1) in phase space, a graph with coordinate axes
{ai}Ni=0.

(iii) Plot the solution’s coordinates vs time, with the horizontal axis being time, and
each ai being plotted on the vertical axis.

(c) The philosophy behind the Galerkin/spectral approach is that as N → ∞, the dynam-
ics of the ODE and its invariant sets will converge to the dynamics and invariant sets
of the PDE.2

Investigate this hypothesis for the Fisher-KPP equation. How do the dynamics in the
N = 1 Galerkin approximation compare to the N = 2 case? What about much larger
values of N?

NOTE: When dealing with the Galerkin approximation for large N, I would highly
recommend defining the ODE using the FFT methods we discussed in Week 1. Also
for large N the ODE is “stiff”. For numerically solving stiff ODEs you should use an
implicit method, like the one-step method from Uecker (2009), or MATLAB’s ode15s.

(d) Repeat parts (a)-(c), but this time use the parameter λ = 2.

5. Dynamics of the Galerkin Approximation: Allen-Cahn equation
Consider the Allen-Cahn equation we discussed in Week 1:

∂tu = ν∂xxu+ u− u3, 0 = ∂xu(t, 0) = ∂xu(t, π). (6)

Repeat the previous problem, but instead use the Galerkin approximation of the Allen-Cahn
equation with ν = 0.5 and ν = 2.

2What “converge” means here is somewhat ambiguous. In later weeks we’ll study how to give this a more
precise definition.


