Math 876: PDE Seminar 2022 Week 4: Sectorial operators and analytic semigroups
 February 15 \& 17, 2022

General: This week we look at a special class of C_{0}-semigroups, namely those which are analytic and generated by sectorial operators. This class of semigroups is very important in the study of reaction diffusion equations, and are more well behaved than a plain old C_{0}-semigroup. To prove the fundamental theorem of sectorial operators $\S 3.7$ we introduce interpolation spaces and fractional powers of operators. One motivation for this section are PDEs where there are spatial derivatives included in the nonlinearity. A simple example of this would be the viscous Burger's equation $\partial_{t} u=\nu \partial_{x x} u+\partial_{x}(u)^{2}$ and a complicated example would be the Navier-Stokes equation.

Required Reading: Sell \& You: §3.6-§3.7
Supplementary Reading: $\S 3.6 .2$ - The Lax-Milgram theorem is important, but it is not the focus of what we are covering this week.

Important Concepts: analytic semigroup; sectorial operator; positive operator; fractional powers of operators; interpolation spaces; fundamental theorem of sectorial operators; continuity lemma.

Reading Questions: Email me at least 3 questions on the reading at least an hour before class on Tuesday.

Presentations:

Sectorial Operators (Tu): Tell us about sectorial operators, and explain Figure 3.1. Give some examples of operators which are/aren't sectorial. Sketch out the different characterizations given in the fundamental theorem of analytic semigroups (Theorem 36.2).

Interpolation spaces (Tu): Tell us about interpolation spaces, fractional powers of positive sectorial operators, and the relations between the two. Use ℓ_{s}^{2} as an example of interpolation spaces and fractional powers. The Fundamental Theorem of Sectorial Operators (Theorem 37.5) is likely the most important theorem of the week. Tell us a bit about items (2) and (3) of the theorem.

Continuity Lemma (Th): The Continuity lemma (Lemma 37.9) gives sufficient conditions for when $u \in L^{2}[0, t ; H)$ is in fact continuous. The argument uses interpolation spaces, and leads us to the notion of weak solutions in Chapter 4. Tell us about this lemma and sketch its proof.

Problems:

Sectorial Operators: Consider the PDE below defined on $H=L^{2}([0, \pi], \mathbb{C})$ with Dirichlet-0 boundary conditions,

$$
u_{t}=\underbrace{\left(1+e^{i \theta} \partial_{x x}\right)}_{-A_{\theta}} u
$$

Calculate the values of $\theta \in[-\pi, \pi]$ for which:
(a) The linear operator $-A_{\theta}$ generates a C_{0}-semigroup.
(b) The map A_{θ} is a sectorial operator.
(c) The C_{0}-semigroup $\left(T_{\theta}(t),-A_{\theta}\right)$ is a differentiable semigroup.

Compactness and Sectorial Operators

(a) Construct a positive linear operator A such that $e^{-A t}$ is a compact C_{0}-semigroup, yet A is not sectorial.
(b) Construct a positive sectorial operator A such that $e^{-A t}$ is not compact.

Interpolation spaces: Recall our definition of $\ell_{s}^{p} \equiv \ell_{s, 1}^{p}$ from Week 2, where

$$
\ell_{s}^{p}:=\left\{\left\{a_{n}\right\}_{n \in \mathbb{Z}}: a_{n} \in \mathbb{C},\|a\|_{\ell_{s}^{p}}<\infty\right\}
$$

and we define the norm

$$
\|a\|_{\ell_{s, d}^{p}}= \begin{cases}\left(\sum_{n \in \mathbb{Z}}\left(1+|n|^{p}\right)^{s}\left|a_{n}\right|^{p}\right)^{1 / p} & \text { if } p \neq \infty \\ \sup _{n \in \mathbb{Z}}(1+|n|)^{s}\left|a_{n}\right| & \text { if } p=\infty\end{cases}
$$

Note that $\left(\ell_{s}^{2}\right)^{*} \cong \ell_{-s}^{2}$ and $\left(\ell_{s}^{1}\right)^{*} \cong \ell_{-s}^{\infty}$.
(a) For $p=1,2, \infty$, show that ℓ_{s}^{p} is a family of interpolation spaces for $s \in \mathbb{R}$.
(b) Motivated from the $\operatorname{PDE} u_{t}=-\left(1+\partial_{x x}\right)^{2} u$, consider the densely defined linear operator A on ℓ_{0}^{p} given by

$$
(A c)_{k}=\left(1-2 k^{2}+k^{4}\right) c_{k}, \quad c \in \ell_{0}^{p}
$$

Show that A is a sectorial operator on ℓ_{0}^{p} for $p=1,2, \infty$.
(c) Is A a positive sectorial operator? If so, describe the map A^{α} for $\alpha \in \mathbb{R}$.
(d) Show that the spaces $V^{2 \alpha}=\mathcal{D}\left(A^{\alpha}\right)$, the fractional power spaces generated by the sectorial operator A, are isomorphic to $\ell_{4 \alpha}^{p}$, for $p=1,2, \infty$.

Fundamental Theorem of Sectorial Operators: Consider the PDE below defined on $L^{2}([0, \pi], \mathbb{R})$ with Dirichlet-0 boundary conditions,

$$
u_{t}=\underbrace{\left(-2+\partial_{x x}\right)}_{-\tilde{A}} u
$$

and define the Hilbert spaces

$$
\ell_{s, D i r}^{2}=\left\{c \in \ell_{s}^{2}: \operatorname{Re}\left(c_{k}\right)=0, c_{k}=c_{-k}^{*}\right\} .
$$

(a) Define a linear operator A on V^{0} which is conjugate to the operator \tilde{A}; ie $A c=\mathcal{F} \tilde{A} \mathcal{F}^{-1} c$ where \mathcal{F} is the Fourier transform.
(b) Show that A is a positive sectorial operator, and then calculate A^{α} for $\alpha>0$.
(c) For which s is $\ell_{s, D i r}^{2}$ isomorphic to $V^{2 \alpha}=\mathcal{D}\left(A^{\alpha}\right)$ with $V^{0}=\ell_{0, D i r}^{2}$?
(d) For the operator A, calculate the constants M_{r}, K_{α} and C_{r} from items (2), (3) and (4) from Theorem 37.5.

