Math 876: PDE Seminar 2022
 Week 5: Illustrations

February 24, 2022

General: In $\S 3.8$ we go over some more examples of C_{0}-semigroups, covering even more examples in the homework. In $\S 3.9$ we see that small perturbations of sectorial operator produces a sectorial operator (for an appropriate notion of small).

Due to the President's day holiday, this week we only meet on Thursday (not on Tuesday). Office hours this week are Tuesday/Wednesday from 12:30pm-2:00pm.

Required Reading: §3.8.1- §3.8.4, §3.9
Supplementary Reading: Appendix C. 1 Bochner integrals.
Important Concepts: $\partial_{x x}$ operator on \mathbb{R}, Leray projection; Stokes operator; wave equation; perturbations of sectorial operators.

Reading Questions: No required reading questions this week. But as always, if you have any questions feel free to talk to me or your classmates about them!

Presentations: See HW.

Problems:

Heat equation on a line: Do problem \# 13 (p23) from Geometric Theory of Semilinear Parabolic Equations by D. Henry, repeated below.

Let $X=C(\mathbb{R}, \mathbb{R})$, the Banach space of bounded continuous functions from \mathbb{R} to \mathbb{R} with the sup-norm. Let $A u(x)=-\partial_{x x} u(x)$ for

$$
u \in \mathcal{D}(A)=\left\{u \in C^{2}(\mathbb{R}, \mathbb{R}): u, u^{\prime}, u^{\prime \prime} \in X\right\}
$$

and let $X_{1}=C l_{X}(\mathcal{D}(A))$. (Note: $\left.X_{1} \neq X\right)$. If $\lambda=m^{2}, \operatorname{Re}(m)>0$, calculate

$$
(\lambda I+A)^{-1} f(x)=\frac{1}{2 m} \int_{-\infty}^{\infty} e^{-m|x-\xi|} f(\xi) d \xi
$$

for $f \in X_{1}$. Prove A is sectorial in $X_{1}, \sigma(A)=[0,+\infty)$, and for any complex $\lambda \neq 0$ with $|\arg \lambda| \leq \theta<\pi$, and any $f \in X_{1}$,

$$
\left\|(\lambda I+A)^{-1} f\right\|_{X} \leq|\lambda|^{-1} \sec \theta / 2\|f\|_{X}
$$

Show that, for any $\phi \in X_{1}$ (i.e., any uniformly continuous $\left.\phi \in X\right)$ if $u(x, t)=\left(e^{-A t} \phi\right)(x)$ with $t>0, x \in \mathbb{R}$, then $u, \partial_{t} u, \partial_{x x} u$ are continuous and $\partial_{t} u=\partial_{x x} u$ for $t>0,-\infty<x<\infty$.

Also $u(x, t) \rightarrow \phi(x)$ as $t \rightarrow 0^{+}$, uniformly in x. (i.e. show that u is a classical solution on $[0, \infty)$.$) Can you prove this is the only (classical) solution of$

$$
\begin{aligned}
\partial_{t} u=\partial_{x x} u & (t>0) \\
u\left(0^{+}, x\right)=\phi(x), & -\infty<x<\infty
\end{aligned}
$$

Linear Boussinesq equation: Do problem 38.10 from the book. Can you say something more about the case when $\Omega=(0, \pi)^{2} \subseteq \mathbb{R}^{2}$?

Stokes Equation: Consider the Stokes equations on $\Omega=(0, \pi)^{2}$ given by

$$
\begin{aligned}
\partial_{t}-\nu \triangle u+\nabla p & =f, \\
\nabla \cdot u & =0
\end{aligned}
$$

taken with Dirichlet boundary conditions. Using a Fourier basis, compute the Helmholtz/Leray projection \mathbb{P} and the Stokes operator A. What is $\sigma(A)$?

Hint: For $m \leq n$, fix a m dimensional subspace $V \subseteq \mathbb{R}^{n}$, and fix a matrix $A \in \mathbb{R}^{n \times m}$ such that V is spanned by the columns of A. Then the projection $P_{V}: \mathbb{R}^{n} \rightarrow V$ has a matrix representation given by $P_{V} x=A\left(A^{T} A\right)^{-1} A^{T} x$ and is independent of the matrix A.

