
Math 876: PDE Seminar 2022

Week 6: Variation of constants
March 1 & 3, 2022

General:
We are now entering the most important chapter of the book! To begin the chapter, in

Section 4.2 we consider the linear, non-autonomous equation

∂tu+ Au = f(t),

and we define three different solution concepts: mild, strong, and classical. As one would
expect: classical =⇒ strong =⇒ mild. In finite dimensional ODEs these solution concepts
largely coincide, but not so in abstract evolutionary equations! In particular, we need to
be mindful of both the temporal and spatial regularity of solutions (eg is f in L1? L∞? Is
it continuous/Lipshitz/differentiable?) Often if we assume f has more temporal regularity
then we can prove u has more spatial regularity. In the homework we explore this interplay
for a specific example.

Required Reading: §4.1 through §4.2.2

Supplementary Reading: Appendix C.2
The Cantor–Lebesgue function is the quintessential example of where the Newton-Leibniz

formula breaks down. This is remedied by introducing the concept of absolute continuity.
Appendix C.2 generalizes this to Banach spaces, and while it isn’t mentioned in the book,1

but many of the theorems here (eg the second half of Lemma C.5) also apply if we take as
a Banach space W = ℓ1.

Important Concepts: variation of constants; mild, strong, and classical solutions;
Leibniz formula.

Reading Questions: Email me at least 3 questions on the reading at least an hour
before class on Tuesday.

Presentations:

Solutions in the C0 Theory (Tu): Start by briefly introducing the Variation of
Constants formula, and the definitions for mild solutions and strong solutions. Then present
the Leibniz formula and the proof of Lemma 42.5.

Solutions in the Analytic Theory (Tu): Briefly discuss Standing Hypotheses
A & B, and give familiar examples of something satisfying Hypothesis B, and something
satisfying A but not B. Then present the proof of Lemma 42.7. (For example, give) If

1For a reference see: Diestel, J., & Uhl, J. J. (1976). The Radon-Nikodym theorem for Banach space
valued measures. The Rocky Mountain Journal of Mathematics, 6(1), 1-46.



time allows, discuss Lemmas 42.8 and how our results improve if we assume the stronger
hypotheses in Theorem 42.9.

Notation:
Recall our definition of ℓ2s ≡ ℓ2s,1 from Week 2 given as

ℓ2s =
{
{ak}k∈Z : ak ∈ C, ∥a∥ℓ2s < ∞

}
, ∥a∥ℓ2s =

(∑
k∈Z

⟨k⟩2s|ak|2
)1/2

,

where we define weights

⟨k⟩ = (1 + |k|2)1/2. (1)

Another option would be to define our weights as

⟨k⟩ =

{
1 if k = 0

|k| if k ̸= 0.
(2)

The weights in (1) and (2) produce equivalent norms on ℓ2s. Since the weights from (2) are
a bit nicer to work with, lets use them for this week. It will also be useful to recall that
for the the Fourier transform defines an isomorphism between the the Sobolev spaces Hs(T)
and ℓ2s, where T = R/2πZ is the torus. As a special case then we have L2(T,R) ∼= ℓ20.

The Sawtooth Function:
Consider the (discontinuous) sawtooth function S : T → R defined by

S(x) = 1− x

π
.

This function is in L2(T,R), and may be given by the Fourier series

S(x) =
2

π

∞∑
k=1

1

k
sin(kx),

which converges in L2. One can check that S ∈ Hs(T,R) for s < 1/2. The functions we
will be looking at in the subsequent problems will look quite similar to the sawtooth function.

Problems:

Bochner Integrals, Part 1: Here we define a forcing function f : [0,+∞) → ℓ20
that we will use in the rest of the problems. We define f component-wise for k ∈ Z by

f0(t) = 0, fk(t) :=

i
k

|k|
if 0 < t <

1

|k|3/2
,

0 otherwise.

(3)

The function f essentially corresponds to a sine series, as Re(f(t)) = 0 and f−k(t) = (fk(t))
∗.

NOTE: For the rest of the problems, we will fix T = +∞.



(a) Prove that f : [0, T ) → ℓ20 is Bochner integrable.

(b) Calculate an upper bound on
∫∞
0

∥f(t)∥ℓ20dt.

(c) Show that f ∈ L1
loc[0, T ; ℓ

2
0) ∩ L∞

loc(0, T ; ℓ
2
0).

Solutions for the C0-theory
Define the linear operator A on L2(T,R) by

Au = −∂xu

Note that D(A) is isomorphic to the Sobolev space H1(T,R) ∼= ℓ21. Define the function
f̃ ∈ L1

loc[0, T ;L
2(T,R)) by

f̃(t, x) =
∑
k∈Z

eiktfk(t)e
ikx,

and consider the PDE

ut + Au = f̃(t). (4)

For k ∈ Z we define a sequence of function {uk}k∈Z : [0, T ) → ℓ20 as follows: For k = 0 we
define u0(t) = 0; for k ≥ 1 we define

uk(t) =

{
ieiktt if 0 ≤ t < k−3/2

ieiktk−3/2 if k−3/2 ≤ t;

and for k ≤ −1 we define uk(t) = (u−k(t))
∗. Furthermore, define u : [0, T ) → L2(T,R) by

u(t, x) =
∑
k∈Z

uk(t)e
ikx.

(a) Show that u(t) is the mild solution of (4) in the space L2 with initial data u(0) = u0 =
0 ∈ H. Can you say anything about the regularity of u with respect to t?

(b) Show that u : [0, T ) → L2(T,R) is not a strong solution. What does this tell us about
the Leibniz Formula (42.7)?

(c) Show that u : [0, T ) → Hs(T,R) ∼= ℓ2s is a strong solution if s < 0.

Bochner Integrals, Part 2:
(Optional) For the last problem, it will be useful to know, for various values of p and s,

when f ∈ Lp
loc[0, T ; ℓ

2
s). To this end, let us define

hs(t) :=


∣∣∣1− t−

2
3
(1+2s)

∣∣∣1/2 if s ̸= −1/2√
− log(t) if s = −1/2.

One can show that for all s ∈ R, exists a constant Cs > 1 such that

1

Cs

(
hs(t)− 1

)
< ∥f(t)∥ℓ2s < Cs

(
hs(t) + 1

)
∀t ∈ (0, 1].

Use this to prove the following:



(a) If 1 ≤ s then f /∈ L1
loc[0, T ; ℓ

2
s) and f ∈ L∞

loc(0, T ; ℓ
2
s).

(b) If −1/2 < s < 1 and 1 ≤ p < 3
(1+2s)

then f ∈ Lp
loc[0, T ; ℓ

2
s) ∩ L∞

loc(0, T ; ℓ
2
s)

(c) If s = −1/2 then f ∈ Lp
loc[0, T ; ℓ

2
s) for all 1 ≤ p < ∞ .

(d) If s < −1/2 then f ∈ L∞
loc[0, T ; ℓ

2
s).

Solutions for the analytic theory:
Define the linear operator A on L2(T,R) by

Aw = −∂xxw.

Note that L2(T,R) ∼= ℓ20 and we have the family of fractional interpolation spaces D(Aα) ∼=
H2α(T,R) ∼= ℓ22α, e.g. D(A1/2) ∼= ℓ21. In a slight abuse of notation, define the function
f : [0,+∞) → L2(T,R) by

f(t, x) =
∑
k∈Z

fk(t)e
ikx

and consider the nonautonomous heat equation on a torus:

wt + Aw = f(t) (5)

Define w : [0,+∞) → L2(T,R) as

w(t, x) = −2
∞∑
k=1

wk(t) sin(kx),

where

wk(t) :=


1− e−k2t

k2
if 0 ≤ t <

1

k3/2

e−k2t

(
e
√
k − 1

)
k2

if
1

k3/2
< t.

(a) Show that w is a mild solution of (5) in the space L2 with initial condition w(0) = 0.

(b) Show that w ∈ C[0, T ;H1) ∩ C0,θ0
loc (0, T ;H1) for some Hölder constant 1/100 < θ0.

(c) Show that the mild solution of (5) with any initial condition u0 ∈ H−1 is in fact a
strong solution in the space H−1.


