
Math 876: PDE Seminar 2022

Week 7: Linear Skew Product Semiflow
March 15 & 17, 2022

General:
This week we are studying linear skew product semiflows in §4.3 and non-autonomous

linear evolutionary equations in §4.4. This material can be seen to generalize Floquet theory
from ODEs (see examples below). Or at least the beginnings of how to generalize Floquet
theory. We will come back to skew product systems when studying exponential dichotomies
and invariant manifolds.

The goal in §4.4, studying non-autonomous linear evolutionary equations, is not unrea-
sonable. However the section has some really heavy notation. This stems from two problems
we want to overcome:

(I) We want to allow for linear operators B : V 2β → W which lose regularity.

(II) We want to work with nonautonomous linear operators B(t) that don’t necessarily
have a limit (or other nice properties) as t → ±∞.

To solve problem (I) we use the fundamental theorem of Sectorial operators and a souped-
up version of Gronwall’s inequality. To solve problem (II) we introduce weaker notions of
convergence through Fréchet spaces.

Primary Reading: §4.3 and §4.4.

Secondary Reading:

� Appendix A.7 - Fréchet Space

� Appendix D - The Gronwall-Henry inequality. It will also be helpful to look up some
properties of the Γ function.

� §4.2.3 - §4.2.4 These sections cover weak solutions, which are related to the limit of
ODE solutions one obtains via a sequence of Galerkin approximations.

Important Concepts: linear skew product semiflow; cocycle identity; the solution
operator Φ(B, t); Fréchet Spaces; the different topologies on L∞ and M∞; the Gronwall-
Henry inequality; the EX property.

Reading Questions: Email me at least 3 questions on the reading at least an hour
before class on Tuesday.

Presentations:



Fréchet spaces (Tu):
In §4.4 we consider the L∞(R;L(V 2β,W )), but we impose different topologies, such as

T∞, Tbo and TA. The first topology makes L∞ a Banach space, but the later two are Fréchet
spaces. Tell us about what Fréchet spaces, why we shouldn’t be afraid of them, and how to
think of these different topologies. In §4.4.2 we introduce M∞ and even more topologies. If
time remains, talk about the continuity of the shift operator σ.

Gronwall-Henry Inequality (Tu):
Tell us about the Gronwall-Henry inequality and how it is used. In particular, fill in the

details for how we get the estimate (44.8), and how we show Φ is Lipschitz continuous in v
and B on p178-179. If you have time, talk about why you think the EX property so named.

Examples:

Floquet theory example from ODEs
Consider the ordinary differential equation Ẋ = f(X) for X = (x, y) given as below:

ẋ = x− y − x(x2 + y2) (1)

ẏ = x+ y − y(x2 + y2)

One can verify that γ(t) := {cos t, sin t} is a periodic solution to (1). An initial condition
X(0) = γ(t0) + h0 will have a solution given by X(t) = γ(t) + h(t). If we drop the O(|h|2)
terms in (1) we obtain the non-autonomous linear system: ht = B(t)h where

B(t) = Df(γ(t)) =

(
−2 cos2(t) −1 +−2 sin(t) cos(t)

1− 2 sin(t) cos(t) −2 sin2(t)

)
.

The monodromy matrix Φ(t) for this system may be computed to be: Φ(t) =

(
e−2t cos t − sin t
e−2t sin t cos t

)
.

In general, even in ODEs, it is quite non-trivial to solve for the monodromy matrix.

Fundamental Theorem of Sectorial Operators
Consider the sectorial operator A = −∂xx defined on W = L2([0, π],R) with Dirichlet 0

boundary conditions, whereby σ(A) = {k2}∞k=0 and ∥e−At∥L(W,W ) ≤ e−t. Furthermore, let
V 2α denote the fractional power spaces generated by A, and note that V 2α ∼= Hα([0, π],R) ∼=
ℓ2α.

By item (2) of the fundamental theorem of sectorial operators, for any β ≥ 0 there is a
constant Mβ > 0 such that

∥Aβe−At∥L(W,W ) ≤ Mβt
−βe−at ∀t > 0, (2)

where a ∈ R is some number for which (36.2) is satisfied.
In Problem II on Burger’s equation we are particularly interested in this bound for the

case β = 1/2. In this case the LHS of (2) becomes

∥A1/2e−At∥L(W,W ) = sup
c∈ℓ2;∥c∥=1

(∑
k∈Z

ke−k2t|ck|2
)1/2

= sup
k∈Z

∣∣ke−k2t
∣∣ (3)



If we fix t > 0 and pretend that k is a continuous variable, then ke−k2t will have a
local maximum when d

dk
ke−k2t = e−k2t (1− 2k2t) = 0; the RHS of (3) is maximized when

k = (2t)−1/2. Plugging this in we obtain:

∥A1/2e−At∥L(W,W ) ≤

{
(2et)−1/2 if 0 < t < 1/2

e−t if 1/2 ≤ t.

If we choose a = 1/2 and M1/2 = 2/3, then the bound in (2) will be satisfied.

Problems:

1. Linear Skew Product Semiflow
Fix f : C1,1

loc (Rn → Rn) and consider the ODE ut = f(u). Define φ : R×M → M as the
flow generated by ut = f(u), and suppose that M ⊆ Rn is a compact invariant set. For each
m ∈ M define the Φ(m, t) as the unique solution to

Φ̇(m, t) = Df(φ(t,m))Φ(m, t)

Φ(m, t) = I

where I ∈ L(Rn,Rn) is the identity matrix. The matrix Φ(m, t) is sometimes called a mon-
odromy matrix, or the principal fundamental matrix solution. Note then that the function

π(w,m, t) = (Φ(m, t)w,φ(t,m)).

defines linear skew product semiflow on Rn ×M

(a) For each m ∈ M define the function B(m; ·) : R → L(Rn,Rn) by

B(m; t) = Df(φ(t,m)). (4)

Show that for all m0 ∈ M we have

B(m0; ·) ∈ L∞(R;L(Rn,Rn)) ∩ C0,1(R;L(Rn,Rn))

Hence, the association m 7→ B(m, ·) defines a map β : M → M∞ ⊆ L∞ where
β(m) = B(m; ·).

(b) Consider the differential equation

x′ = x− x3 (5)

and defineM = [−1, 1], the global attractor. Show that if we are using the T∞ topology
on L∞, then the map β : M → L∞ is not continuous at 0 ∈ M .

(c) Suppose M ⊆ Rn is an arbitrary compact invariant set, and consider M∞ ⊆ L∞ with
the Tbo topology. Show that if we are using the Tbo topology on L∞, then the map
β : M → L∞ is continuous.1

Conclude that the image β(M) = K ⊆ M∞ is compact, and that K is invariant under
the flow σ defined in §4.4.2.

1Recall that if f : M → Rn and Lip(f) = κ, then ∥φ(t, x0)− φ(t, y0)∥ ≤ ∥x0 − y0∥eκ|t| for all x0, y0 ∈ M
and t ∈ R.



(d) Show that the function
π (v0, B, τ) = (Φ(B, τ)v0, Bτ )

defines a linear skew product semiflow on Rn ×K.

2. Burger’s Equation
Consider the sectorial operator A = −∂xx defined on W = L2([0, π],R) with Dirichlet 0

boundary conditions, whereby σ(A) = {k2}∞k=0 and ∥e−At∥L(W,W ) ≤ e−t. Furthermore, let
V 2α denote the fractional power spaces generated by A, and note that V 2α ∼= Hα([0, π],R) ∼=
ℓ2α.

In this problem we consider the forced, viscous Burger’s equation:

ut + Au = uxu+ f(t) (6)

for some f ∈ C1,1(R,W ). Furthermore, suppose there exists some b ∈ C0,1(R, C1([0, π]))
which is a globally defined solution to (6).

(a) For each t ∈ R, define the map B : V 1 → W by

[B(t)h](y) = bx(t, y)h(y) + b(t, y)hx(y) (7)

where h ∈ V 1, y ∈ [0, π] and bx = ∂xb. Show that

B ∈ L∞(R;L(V 1,W )) ∩ C0,1(R;L(V 1,W ))

and thereby B ∈ M∞. Furthermore, show that

∥B∥L∞(R;L(V 1,W )) ≤ ∥b∥L∞(R,C1([0,π])).

(b) For h0 ∈ W , consider the initial condition u(0) = b(0) + h0 to (6). After some cancel-
lation and dropping the higher order terms in (6), we obtain the linearized equation
about b below:

ht − ∂xxh = B(t)h, h(0) = h0. (8)

Show that there is a unique strong solution h ∈ C0, 1
2 (0,∞;V 1) solving (8) a.e. in W .

(c) For the functions Er,c(z) defined in Appendix D, show that

ez ≤E 1
2
,1(z) ≤ (1 +

√
z)ez

√
πzez ≤E 1

2
, 1
2
(z) ≤

√
πz(1 + ez + zez).

(d) Calculate µ in terms of ∥B∥∞, for µ given by equation (44.8) in the book.

(e) Show that if ∥b∥L∞(R,C1([0,π])) <
3

2
√
2π

then limt→∞ ∥h(t)∥V 1 = 0 for any h0 ∈ W .


