
Math 876: PDE Seminar 2022
Week 8: Nonlinear Theory

March 22 & 24, 2022

General:
We now have the tools to prove theorems about the local existence of solutions to nonlinear

PDEs, global existence vs the blowup alternative, and patching together individual solutions to
define a semiflow. These results can be seen as generalizations of familiar theorems from ODEs,
and the proofs often follow the same overall approach.

The differences needed for the PDE theory are in the finer details: we have different types
of solutions (mild vs strong vs classical) so we’ll need stronger assumptions to obtain stronger
regularity; in the analytic theory we have several different norms to keep track of, and bound using
the Gronwall-Henry inequality; when dealing with non-autonomous problems we want to define a
skew-product semi-flow, and this introduces some weird topologies.

But at the end of the day we get some pretty strong results. We are able to identify systems
where global existence is assured, and the Herculean theorem shows that with Standing Hypothesis
A, an invariant set of mild solutions are in fact classical!

Primary Reading: §4.6 and §4.7.

Secondary Reading:

� C.3 Fréchet differentiability is the gold standard of differentiability.

� Problems #2 and #3 look at the numerical method of exponential integrators. If you are
interested in learning more see the reference below.

Hochbruck, M., & Ostermann, A. (2010). Exponential integrators. Acta Numerica, 19, 209-
286.

Important Concepts: the spaces Ck
Lip; local existence and uniqueness of solutions; global

existence and blowup alternative; construction of nonlinear semiflow;

Reading Questions: Email me at least 3 questions on the reading at least an hour before class
on Tuesday.

Presentations:

Construction of Semiflow (Tu): Tell us about §4.6.3 and §4.6.4 on the construction of the
nonlinear semiflow. How does Theorem 46.4 get used?

Herculean Theorem (Tu): Tell us about Theorem 47.6 and its proof. Why do you think this
will be an important theorem? Explain why, without extra hypotheses, we don’t get that u is a
mild solution in the space V 2 (cf Theorem 42.10).

Problems:

Banach Algebra



The book begins its study of the nonlinear theory with a discussion of the nonlinearities to be
considered. In particular Lipschitz continuous and Fréchet differentiable functions.

Definition 1. A Banach algebra is a Banach space X with a multiplication operation ∗ : X×X →
X that satisfies

x ∗ (y ∗ z) = (x ∗ y) ∗ z
(x+ y) ∗ z = x ∗ z + y ∗ z, x ∗ (y + z) = z ∗ y + x ∗ z

α(x ∗ y) = (αx) ∗ y = x ∗ (αy)
∥x ∗ y∥ ≤ ∥x∥∥y∥,

for all x, y, z ∈ X and all scalars α.

The Banach algebra is commutative if x ∗ y = y ∗ x for all x, y ∈ X. A unit element e of a
Banach algebra X, if one exists, satisfies x ∗ e = e ∗ x = x for all x ∈ X.
Examples:

� If W is a Banach space, then the space of bounded linear operators L(W,W ) is a noncom-
mutative Banach algebra, where ∗ is given by composition of maps.

� If Ω ⊆ Rn, then C0(Ω,R) is a Banach algebra, where ∗ is given by pointwise multiplication
of functions. The space X1 = {f ∈ C0(Ω,R) : f |∂Ω = 0} is an example of Banach algebra
without a unit element.

� If s ≥ 0 then ℓ1s,d is a Banach algebra. For a, b ∈ ℓ1s,d the product a ∗ b is the discrete

convolution, given componentwise by (a ∗ b)k =
∑

k1+k2=k ak1bk2 for k1, k2, k ∈ Zd.

Theorem 1. Let W be a Banach algebra with product ∗ and fix c ∈ W . Define maps F,G : W → W
by

F (w) = c ∗ w, G(w) = w ∗ w.

Then F and G are Fréchet differentiable on W , and

DF (w)h = c ∗ h, DG(w)h = w ∗ h+ h ∗ w.

for all h ∈ W .

#1. Banach Algebra Problem
Suppose W is a commutative Banach algebra over R, with product ∗ and unit e. For n ∈ N we

recursively define wn by w0 := e and wn+1 = w ∗ wn.
Suppose that f : R → R is a real analytic function. That is, there is a sequence {ck}∞k=0 ⊆ R

for which f is given by

f(x) =
∞∑
k=0

ckx
k,

which converges absolutely for all x ∈ R. We define the function F : W → W by

F (w) =

∞∑
k=0

ckw
k.



(a) Show that F ∈ C1
F (W,W ). Moreover, show that the Fréchet derivative DF (w) ∈ L(W,W )

of F at w ∈ W is given by

DF (w)h =

( ∞∑
k=1

kckw
k−1

)
∗ h,

for all h ∈ W . Then show that DF ∈ C0(W,L(W,W )).

(b) Use the Mean Value Formula (93.4) on page 619 to show that F ∈ C1
Lip(W,W ).

The Exponential Euler’s method
At the beginning of the semester, we took a look at how to numerically solve PDEs with the

Fourier transform and the Euler method. Unless the time step is very small, numerical solutions
will blow up when using the explicit Euler method. The implicit Euler method solved this spurious
numerical blowup problem, but small time steps are still needed for accuracy. For nonlinear PDEs
we used an IMEX method: treating the linear part implicitly and the nonlinear part explicitly.
This week we take a look at the exponential Euler’s method and try to answer the question: Why
should our numerical approximation be close to the true mathematical solution?

Fix (e−At,−A) a C0-semigroup on a Banach space W , and let F ∈ C1
Lip(W,W ). Fix an initial

condition u0 ∈ W and consider the initial value problem

∂tu+Au = F (u(t)), u(0) = u0.

The mild solution of the differential equation will satisfy the variation of constants formula:

u(t) = e−Atu0 +

∫ t

0
e−A(t−s)F (u(s))ds.

If the only information we have is the initial condition u(0) = u0, then the simplest thing we could
do to approximate the solution is plug u(s) = u0 into the integral. This leads us to the exponential
Euler approximation:

ū(t) := e−Atu0 + tφ1(−At)F (u0), (1)

where φ1 is the entire, analytic function

φ1(z) :=
ez − 1

z
=

∞∑
n=0

zn

(n+ 1)!
.

We define φ1(z) more generally below:

Definition 2. Fix (e−At,−A) a C0-semigroup on a Banach space W .

(i) For t > 0, define: φi
1(−At) := 1

t

∫ t
0 e

−A(t−s)ds .

(ii) Suppose A is invertible. For t > 0 define: φii
1 (−At) := (−At)−1

(
e−At − I

)
.

(iii) Suppose A ∈ L(W,W ). For t > 0, define: φiii
1 (−At) :=

∑∞
n=0

1
(n+1)!(−At)n.

#2. Equivalence of Definitions
(Optional) This problem shows that the various definitions of φi

1, φ
ii
1 , φ

iii
1 all agree when they

overlap. Hence we can simply refer to the function φ1 without ambiguity.



(a) Use Theorem 31.4 (2) to show that φi
1(−At) = φii

1 (−At) whenever A is invertible.

(b) (Operator Calculus) Suppose that A ∈ L(W,W ) and consider the differential equation on
L(W,W ) given below:

∂tX +AX = I, X(0) = 0 ∈ L(W,W ) (2)

(i) Show that Xi(t) = tφi
1(−At) is a mild solution to (2).

(ii) Show that Xiii(t) = tφiii
1 (−At) is a classical solution to (2).

(iii) Use Lemma 42.1 to conclude that φi
1(−At) = φiii

1 (−At).

#3. Convergence of the exponential Euler method:
It follows from the previous problem, that for our definition of ū(t) in (1), we have

ū(t) = e−Atu0 + tφ1(−At)F (u0)

= e−Atu0 +

∫ t

0
e−A(t−s)F (u0)ds.

In this problem we estimate how close ū is to the true solution. Throughout, we assume the same
hypotheses and notation as in Theorem 46.1 of Sell & You.

(a) Show that for any ϵ > 0, there exists some τ > 0 such that

∥ū(t)− u0∥ ≤ ϵ ∀t ∈ [0, τ ].

(b) If necessary, shrink τ so that it isn’t larger than the variable τ defined in Theorem 46.1, and
define I = [0, τ ]. For the map T : C(I,W ) → C(I,W ) defined in Theorem 46.1, show that

T [ū](t)− ū(t) =

∫ t

0
e−A(t−s)

(
F (ū(s))− F (u0)

)
ds.

(c) Show that there exists a constant C2 such that∥∥T [ū](t)− ū(t)
∥∥ ≤ tC2 ∀t ∈ [0, τ ].

In particular, one may take C2 = ϵMK1e
|a|τ .

Conclusion
The proof of Theorem 46.1 showed that T : F → F is a contraction mapping with contraction

constant 1
2 , hence limn→∞ T n(ū) = u, the mild solution. It then follows that:

∥u− ū∥C0(I,W ) ≤
∞∑
n=0

∥T n+1(ū)− T n(ū)∥ ≤
∞∑
n=0

(
1
2

)n ∥T (ū)− ū∥ = 2C2τ

The upshot here is that our error estimate is proportional to ϵK1τ . Recall that ϵ goes to zero as
τ → 0 and is choosen so that ∥ū(t) − u0∥ < ϵ; the constant K1 ≈ ∥DF (u0)∥ + O(ϵ2) bounds the
Lipschitz constant of F ; and τ is the time step. Furthermore, we never assumed that u0 ∈ D(A);
these bounds still hold if ∥Au(t)∥W = +∞ for all t!

#4. Global Existence and the Blowup Alternative:
Prove Lemma 47.4.


