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From topology to dynamics and back again

2017 On ε approximations of persistence diagrams
J. & Miroslav Kramar

2018 Counting and Discounting Slowly Oscillating
Periodic Solutions to Wright’s Equation
J. et al.

2019 Fractal Dimension Estimation with Persistent
Homology: A Comparative Study
J. & Benjamin Schweinhart
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Presentation Outline

1 Background: Fractal Dimension and Persistent Homology

2 Previous Work and Definitions

3 Computational Results
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Fractal Dimension

Fractal dimension measures how the properties of a shape depend on scale.

The first notion of a fractional dimension was proposed by Hausdorff in
1918. Since then, several other definitions have been proposed, including the
box-counting, packing, and correlation dimensions.

These dimensions agree on a wide class of “regular” sets.
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Filtrations

A filtration of topological spaces is family {Xα}α∈I with ordered index set
I , together with inclusions iα,β : Xα ↪→ Xβ for α < β.
Example: if S ⊂ R2 we have the filtration of ε-neighborhoods {Sε}ε∈R+ .
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Persistent Homology

Persistent Homology (PH) tracks how the homology changes through a
filtration. PH i is a set of intervals corresponding to homology generators
that are born and die in this process.
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Definition of Persistent Homology

Given a filtration {Xα} , PH i (Xα) is the unique set of intervals so that

rank(iα,β : Hi (Xα)→ Hi (Xβ)) = #
{
I ∈ PH i (Xα) : [α, β] ⊆ I

}
.
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Persistent Homology

The information in PH is often summarized by a persistence diagram: a
scatter plot of (birth, death) for each interval.
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Persistent Homology

PH1(Sε) is a set of intervals, one for each component of the complement
that disappears as ε increases (by Alexander duality).
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Persistent Homology

PH1(Sε) has one interval for each bounded component of the complement
of S (by Alexander duality).
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Persistent Homology of a Sample
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Persistent Homology of a Sample

If we take the persistent homology of larger and larger samples, the
diagram begins to approach that of the support.
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Persistent Homology of a Sample

We also have a cluster of small intervals that are usually written off as
“noise.” We can use this noise to estimate fractal dimension!
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Minimum Spanning Trees

Definition (Minimum Spanning Tree)

Let x be a finite metric space (e.g. a weighted graph). The minimum
spanning tree on x, denoted T (x) is the connected graph with vertex set
x that minimizes the sum of the length of the edges.

In fact, for any α > 0, T (x) minimizes the weighted sum

Σe∈T (x) |e|α .
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Minimum Spanning Trees and PH0

Theorem

If x is a finite metric space, then there is a bijection between the edges of
T (x) and the intervals of PH0(x). An edge corresponds to an interval of
half the length.

*This depends on whether persistent homology is taken with respect to the Rips/Čech complex.
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Minimum Spanning Trees and PH0

The proof follows Kruskal’s algorithm to compute the MST
– Expand balls until two from different components overlap
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Main Questions

Question

Can the fractal dimension of a metric measure space be estimated from
the persistent homology of random point samples?

Question

How does the practical performance of the PH i -dimension compare to
classical methods such as box-counting or the correlation algorithm?
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1 Background: Fractal Dimension and Persistent Homology

2 Previous Work and Definitions

3 Computational Results

J. Jaquette (Brandeis) Fractal Dimension & Persistent Homology November 11, 2019 22 / 40



Previous Work on Fractal Dimension and PH

Several authors have defined fractal dimensions based on PH, and
compared computational estimates with known dimensions:

2000 Robins. PhD thesis: Persistent Betti numbers of fractals, proved
results for H0 of disconnected sets.

2012 MacPherson & Schweinhart. Measuring Shape with Topology:
PH of shapes, studied probability distributions of polymers.

2018 Schweinhart. PH and the Upper Box Dimension & The persistent
homology of random geometric complexes on fractals:
First results relating PH to a classically defined fractal dimension.

2019 Adams et. al. A Fractal Dimension for Measures via PH:
PH of random point samples; definition very similar to the one here.
Computational experiments that motivated the current work.
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Persistent Homology Dimension

Definition (α-Weighted Lifetime Sum)

If X is a bounded metric space, define

E i
α (X ) =

∑
(b,d)∈PHi (X )

(d − b)α .

When i = 0 and X is finite the sum can be taken over the edges of the minimum

spanning tree on X : E 0
α (X ) =

∑
e∈T (X )

(
|e|
2

)α
Definition (Persistent Homology Dimension)

Let µ be a probability measure on a metric space, {xi}i∈N be i.i.d. samples from
µ, and α > 0

If the support of µ is d-dimensional, then E i
α(x1, . . . , xn) should scale as n

d−α
d .

dimPHα
i

(µ) :=
α

1− β
, β := lim sup

n→∞

log(E(E i
α(x1, . . . , xn)))

log(n)
.
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Lorenz Attractor
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Ahlfors Regularity

Ahlfors regularity is a standard hypothesis that implies that the fractal
dimension of a measure is well defined. That is, the various classical
notions of dimension coincide and equal d .

Definition (Ahlfors Regularity)

A probability measure µ supported on a metric space X is d-Ahlfors
regular if there exist positive real numbers c and r0 so that

1

c
rd ≤ µ(Br (x)) ≤ c rd

r for all x ∈ X and r < r0.

Examples include:

Bounded probability densities

The natural measures on the Cantor set, Sierpinski triangle
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Equivalence of Persistent Homology Dimension

Theorem (Schweinhart, 2018)

Let µ be a d-Ahlfors regular measure on a metric space.
If 0 < α < d then,

dimPHα
0

(µ) = d .

Higher dimensional results are more difficult.
Cleanest result is for R2 (for the Čech complex):

Theorem (Schweinhart, 2018)

Let µ be a d-Ahlfors regular measure on R2 with d > 1.5.
If 0 < α < d , then,

dimPHα
1

(µ) = d .
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Computational Results

Question

How does the practical performance of the PH i -dimension compare to
classical methods?

We compared the performance of algorithms to estimate the PH i ,
box-counting, and correlation dimensions, for three classes of examples:
self-similar fractals, chaotic attractors, and empirical earthquake data.
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Classical Fractal Dimension Definitions

Definition (Correlation Dimension)

A probability measure µ on a space X induces a probability measure ν on the
distance set of X . Define the correlation integral and correlation dimension of X

C (ε) = P(d(x , y) < ε), dimcorr(µ) = lim
ε→0

log(C (ε))

log(ε)

Definition (Box Counting Dimension)

Fix compact X ⊆ Rm. Let
{
C δi
}
i∈N be the cubes in the standard tiling of Rm by

cubes of width δ. Let Nδ(X ) be the number of cubes in
{
C δi
}
i∈N that intersect

X . Define the upper and lower box-counting dimensions by

dimbox(X ) = lim sup
δ→0

log(Nδ(X ))

log(1/δ)
and dimbox(X ) = lim inf

δ→0

log(Nδ(X ))

log(1/δ)
,
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Opportunities for Error

Quote (Brandstater & Swinney, 1987)

It is not difficult to develop an algorithm that will yield numbers that can
be called dimension, but it is far more difficult to be confident that those
numbers truly represent the dynamics of the system.

r

Finite sampling, order of limits

Statistical Error

Noise

Discretization

Edge effects

Lacunarity and oscillations

Non-uniform sampling

Autocorrelation Lorenz Attractor
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Lorenz Attractor
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Ikeda attractor

Fractal dimension definitions may disagree,
... or we haven’t taken n large enough,
... or we are making a systematic error.
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Sierpinski Triangle

In general, the PH0 and correlation dimensions perform comparably well.
In cases where the true dimension is known, they approach it at about the
same rate. In most cases, the box-counting and higher PH i dimensions
perform worse.
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Sierpinski Triangle

We found one simple rule for fitting a power law to estimate the PH0

which worked well for all examples, in contrast to the correlation
dimension and (especially) the box-counting dimension.
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Earthquake Data

We applied the dimension estimation algorithms to the Hauksson–Shearer
Southern California earthquake catalog, and found a PH0 dimension
estimate of 1.76 and a correlation dimension estimate of 1.66. This is in
line with previous studies.
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Dependence on α: Best Convergence

For d-Ahlfors regular measures µ, then dimPHα
0

(µ) = d for all α
We choose an α which gives the best convergence
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Dependence on α: Multi-Fractals

Different notions of dimension may disagree for non-regular sets.
For non-regular sets, different values of α may give different values for dimi

PH .

Correlation Box-counting PH .5
0 PH1

0 PH .5
1 PH1

1 Lyapunov
Rulkov 1.01 1.52 1.62 1.87 2.02 < 2.13 1.19
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Slower convergence for higher dimensional data

Correlation Box-counting PH .5
0 PH1

0 PH1
1 Lyapunov

Lorenz 2.04 > 1.90 2.06 2.05 < 2.12 2.06
MG 3.04 > 2.45 3.59 3.70 − 3.58

J. Jaquette (Brandeis) Fractal Dimension & Persistent Homology November 11, 2019 39 / 40



Effectiveness.

PH0 and correlation dimensions perform comparably well
Box-counting, PH1, and PH2 dimensions perform worse

Efficiency.

Computing PH0 dimension is fast and comparable with the correlation
and box-counting dimensions
PH1 dimension is reasonably fast for subsets of R2

PH1 and PH2 are slow/impractical for higher ambient dimensions

Equivalence.

For a large class of regular fractals PH dimension coincides with
classical definitions of fractal dimension
If the different fractal dimension estimates disagree, it may be due to
(i) slow convergence (ii) systematic error (iii) definitions truly disagree

Error. Error estimates do not meaningfully reflect the difference
between the dimension estimate and the true dimension

Ease-of-use. One simple rule for fitting a power law to estimate the
PH0 worked well for all examples, in contrast to the correlation
dimension and (especially) the box-counting dimension
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