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Abstract. We give an overview of some p-adic algorithms for computing with el-
liptic and hyperelliptic curves, starting with Kedlaya’s algorithm. While the origi-
nal purpose of Kedlaya’s algorithm was to compute the zeta function of a hyperel-
liptic curve over a finite field, it has since been used in a number of applications.
In particular, we describe how to use Kedlaya’s algorithm to compute Coleman
integrals and p-adic heights on elliptic and hyperelliptic curves. Throughout, we
give several numerical examples, and we conclude by showing how to use Coleman
integrals to explicitly find integral points on hyperelliptic curves whose Jacobians
have Mordell-Weil rank equal to their dimension.
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1. Introduction

In 2001, Kedlaya [26] gave an algorithm to calculate the zeta function of a hyperelliptic
curve over a finite field of odd characteristic via a p-adic approximation to the character-
istic polynomial of Frobenius. This is achieved by explicit computation of the action of
Frobenius on Monsky-Washnitzer cohomology.

The action of Frobenius also plays a key role in constructing the analytic continu-
ation of the p-adic line integral known as the Coleman integral. This theory of p-adic
integration was developed by Coleman [17], who used these integrals to study torsion
points on curves. Among other applications, Coleman further used these integrals to rein-
terpret the method of Chabauty [14] to find rational points on curves whose Jacobians
have Mordell-Weil rank less than their dimension [16].

The method of Chabauty-Coleman is, in practice, a terrific tool for finding rational
points on curves and has inspired the program of Kim [28,29,30,9,8] to develop a non-
abelian analogue of this method to further study rational and integral points on curves,
replacing the Jacobian by a nonabelian geometric object known as the Selmer scheme
and the single Coleman integrals by appropriate iterated Coleman integrals.

Furthermore, there is a close relationship between Coleman integrals and p-adic
heights [20,4] which can be made quite explicit in the case of elliptic and hyperellip-
tic curves. Using this, one can give a special case of Kim’s program, using double inte-
grals to find integral points on elliptic and hyperelliptic curves, essentially a “quadratic”
analogue [6] of the classical method of Chabauty-Coleman.



In these lecture notes, we will touch on a variety of topics, starting with Kedlaya’s
algorithm in §2. In particular, we give a fully worked out example of carrying out the
algorithm in the case of elliptic curves. In §3, we will then show how to use the objects
computed in Kedlaya’s algorithm to compute single and iterated Coleman integrals on
hyperelliptic curves. In §4, we discuss the relationship between Coleman integrals and
p-adic heights and give an example of finding integral points on a hyperelliptic curve
using the quadratic Chabauty method.

2. Kedlaya’s algorithm

2.1. Introduction and motivation

We begin by describing Kedlaya’s algorithm for elliptic and hyperelliptic curves, and we
draw on [26,27,22] throughout our exposition.

Let C be a smooth projective curve of genus g over Fq, where q = pm. The zeta
function ζ (C,T ) of C is defined to be

ζ (C,T ) = exp

(
∞

∑
k=1

#C(Fqk)
T k

k

)
.

Weil showed that the zeta function is a rational function of T : that is,

ζ (C,T ) =
P(T )

(1−qT )(1−T )
,

where P(T ) is a polynomial over Z of degree 2g. Since ζ (C,0) = 1, we have P(0) = 1.
Writing P(T ) = ∏

2g
i=1(1−αiT ), then |αi|=

√
q and αiαg+i = q for i = 1, . . . ,g.

Note that

#C(Fqk) = qk +1−
2g

∑
i=1

α
k
i .

Furthermore, P(1) = #JC(Fq) is the order of the Jacobian of C.
Recall that the Lefschetz fixed point formula applied to an appropriate cohomology

theory of C allows one to compute #C(Fqk) in terms of the action of Frobenius on coho-
mology. Kedlaya [26] uses the observation that Monsky-Washnitzer cohomology satis-
fies a Lefschetz fixed point formula. Then by computing the action of Frobenius on an
explicit basis of Monsky-Washnitzer cohomology in the case of a hyperelliptic curve,
he computes a p-adic approximation to the characteristic polynomial of Frobenius and
recovers the zeta function of the hyperelliptic curve. To say more about this, we review
some key facets of Monsky-Washnitzer cohomology.

2.2. A brief introduction to Monsky-Washnitzer cohomology

Let p> 2 and let C be an elliptic curve or a genus g hyperelliptic curve over an unramified
extension K of Qp with good reduction. Let k = Fq denote the residue field, where q =



pm. We will assume that C is given by a model of the form y2 = f (x), where f is a monic
separable polynomial with deg f = 2g+1. Let C′ be the affine curve obtained by deleting
the Weierstrass points from C, and let A = K[x,y,z]/(y2− f (x),yz−1) be the coordinate
ring of C′.

Let C denote the smooth projective curve over Fq cut out by the affine model y2 =
f (x). Kedlaya’s algorithm computes the zeta function of C by working with cohomology
attached to C′

Recall that the hyperelliptic involution

ι : (a,b) 7→ (a,−b)

gives us an automorphism of the curves C and C′. This, in turn, induces automor-
phisms ι∗ of algebraic de Rham cohomology H1(C′) and H1(C), decomposing them into
eigenspaces on which ι∗ acts as the identity and −1, respectively. In particular,

H1(C′) = H1(C′)+⊕H1(C′)−.

The K-vector space H1(C′)− is spanned by the classes of differentials1

{[
ωi := xizdx

]}2g−1
i=0 . (1)

However, the underlying coordinate ring A does not admit the proper lift of Frobe-
nius. To remedy this, we replace A by the dagger ring A†, the Monsky-Washnitzer weak
completion of A. It is the ring consisting of infinite sums of the form

∞

∑
i=−∞

Si(x)zi, Si(x) =
2g

∑
j=0

a jx j ∈ K[x],

subject to the conditions that liminfi→∞

vp(Si)
i > 0 and liminfi→∞

vp(S−i)
i > 0, where

vp(Si(x)) = mini{vp(ai)}; when necessary, one uses the relation y2 = f (x) to convert
terms with large powers of x into terms with y2 (recalling that z = y−1).

The de Rham complex of A† is given by

d : A† −→ A† zdx
2

,

∑
i, j

ai, jxiz j 7→∑
i, j

ai, jd(xiz j)

= ∑
i, j

ai, j(2ixi−1z j−1− jxi f ′z j+1)
zdx
2

.

1Note that in this section, we primarily use powers of z (where z= 1
y ) for superficial reasons, so that we avoid

having to deal with very large (in absolute value) negative powers of y and instead work with large positive
powers of z. In §3, the largest power of z that will be appear is z1, so we will revert to using 1

y in place of z.
Furthermore, so that we work with the standard invariant differential in the case of an elliptic curve, in §3, we
rescale our basis so that we work with ωi =

xidx
2y .



We denote the cohomology groups of this complex by H i
MW(C′), and as before, they

are K-vector spaces split into eigenspaces by the hyperelliptic involution. Perhaps more
important is that passing from A to A† does not change the presentation of cohomology,
and thus we work with H1

MW(C′)− and the basis (1). In particular, to compute the p-power
Frobenius action φ ∗ on H1

MW(C′)−, we compute its action on the basis elements.
Since K is an unramified extension of Qp, it has a unique automorphism φK lifting

the Frobenius automorphism x→ xp on its residue field. Extend φK to a Frobenius lift on
A† by setting

φ(x) = xp

φ(y) = yp
(

1+
φK( f )(xp)− f (x)p

f (x)p

)1/2

= yp
∞

∑
i=0

(
1/2

i

)
(φK( f )(xp)− f (x)p)i

y2pi .

Note that this gives

φ(z) = φ

(
1
y

)
= y−p

∞

∑
i=0

(
−1/2

i

)
(φK( f )(xp)− f (x)p)i

y2pi

= zp
∞

∑
i=0

(
−1/2

i

)
(φK( f )(xp)− f (x)p)iz2pi.

Example 2.1. Consider xizdx ∈ H1
MW(C′)−. We compute the action of Frobenius on this

differential form:

φ
∗ (xizdx

)
= xpi

φ(z)d(xp)

= pxpi+p−1zp

(
∞

∑
k=0

(
−1/2

k

)
(φK( f )(xp)− f (x)p)kz2pk

)
dx.

Remark 2.2. Note that one needs z = y−1 as an element of A†, which explains why we
compute with C′ instead of C.

Remark 2.3. For ease of exposition, we describe all of our algorithms as if it were pos-
sible to compute exactly in A†. This is not possible for two reasons: the elements of A†

correspond to infinite series, and the coefficients of these series are polynomials with
p-adic coefficients. In practice, each computation will be made with suitable p-adic ap-
proximations of the truly desired quantities, so one must keep track of how much p-adic
precision is needed in these estimates in order for the answers to bear a certain level of
p-adic accuracy.



2.3. The algorithm

Now we describe how to carry out Kedlaya’s algorithm. Begin by letting

G(x) =
φK( f )(xp)− ( f (x))p

p
.

Then the action of Frobenius on each of the basis elements in (1) is easily calculated
from

Fi := φ
∗ (xizdx

)
= ∑

0≤k<N′

((
−1/2

k

)
pk+1Gkxp(i+1)−1z(2k+1)p−1

)
zdx, (2)

as an element of K[x,y,z]/(y2− f (x),yz−1), with a precision of N p-adic digits, where
N′ is the smallest integer such that

N′−blogp(2N′+1)c ≥ N.

The 2g differentials in (1) span H1
MW(C′)−, so we are able to write an arbitrary

element in (A−)† zdx
2 (where A− =

⊕
0≤i<2g+1, j≡1(2) Kxiz j) as a linear combination of

d(xiz j) and (1); that is, we first compute the action of Frobenius on each basis differential,
resulting in (2), and then re-express (2) in terms of a linear combination of (1) and an
exact differential (given by a linear combination of appropriate d(xiz j)). This reduction
process, which allows us to write ω ∈ (A−)† zdx

2 as

ω = dh+ c0ω0 + · · ·+ c2g−1ω2g−1, (3)

is known as Kedlaya’s algorithm.
For the purposes of the reduction algorithm, the following definition is helpful:

Definition 2.4. Given a multivariate polynomial g(x,y,z) in K[x,y,z]/(y2− f (x),yz−1),
the highest monomial of g is the one with smallest power of z and largest power of x.

Example 2.5. Let y2 = f (x) = x3− x+ 1
4 . The highest monomial of

d(xiz j) = (2ixi−1z j−1−3 jxi+2z j+1 + jxiz j+1)
zdx
2

is xi−1z j−1 if 1≤ i < 3 and x2z j+1 if i = 0.

We now give the reduction algorithm.



Algorithm 1 Kedlaya’s algorithm
Input: The basis of differentials {ωi = xizdx}2g−1

i=0 .
Output: The 2g× 2g matrix M of a p-power lift of Frobenius φ , as well as functions
fi ∈ A† such that φ ∗(ωi) = d fi +∑

2g−1
j=0 Mt

i jω j.

1. Begin by computing a list of differentials d(xiz j), where 0 ≤ i < 2g+ 1 and j ≡ 1
(mod 2).

2. For each i, compute Fi = φ ∗(ωi) (see (2)) and group the resulting terms as
(∑ pk+1ci,k, jz j)zdx, where ci,k, j ∈ K[x] have degree less than or equal to 2g+1.

3. If Fi has a term (xiz j)zdx with j > 0, consider the term (ci,k, jz j)zdx where j is max-
imal. Take the unique linear combination of the d(xkz j−1) such that when this linear
combination is subtracted off of Fi, the resulting “Fi” no longer has terms of the form
(xmz j)zdx. Repeat this process until Fi (or, in more precise terms, the resulting “Fi”
at each step minus linear combinations of differentials) has no terms (xmz j)zdx with
j > 0.

4. If Fi has terms with j ≤ 0, let (xmz j)zdx be the term with the highest monomial of Fi.
Let (xkzl)zdx be the term such that d(xkzl) has highest term (xmz j)zdx and subtract
off the appropriate multiple of d(xkzl) such that the resulting Fi no longer has terms
of the form (xmz j)zdx with j 6= 0. Repeat this process until the resulting Fi is of the
form

(
M0i +M1ix + · · ·+M2g−1ix2g−1

)
zdx.

5. For each i, return the expression

φ
∗(ωi) = d fi +

2g−1

∑
j=0

Mt
i jω j.

2.4. Example: Computing the matrix of Frobenius for “37.a1′′ at p = 5

Let p = 5 and consider the elliptic curve with LMFDB label “37.a1′′ [31, Elliptic Curve
37.a1] with minimal model y2 + y = x3− x.

Step 1. Put the elliptic curve into Weierstrass form y2 = x3 +a4x+a6, via the transfor-
mation

a4 =−
c4

24 ·3
, a6 =−

c6

25 ·33 .

In our case, we obtain the curve y2 = x3− x+ 1
4 . Let

f (x) = x3− x+
1
4
.

Step 2. Fix the precision N and compute N′. In our case, N = 2 and N′ = 3.
Step 3. Compute the action of Frobenius on the two differentials zdx and xzdx as an ele-

ment of Zp[x,y,z]/(y2− f (x),yz−1), with a precision of N digits. Furthermore,
group the terms of φ ∗(xizdx) as ∑(pk+1ci,k, jz j)zdx, where the ci,k, j are in Zp[x]
of degree less than 3. In our case, we compute

http://www.lmfdb.org/EllipticCurve/Q/37.a1
http://www.lmfdb.org/EllipticCurve/Q/37.a1


F0 = φ
∗(zdx)≡ (5xz2 +(5x+5x2)z4)zdx (mod 25)

F1 = φ
∗(xzdx)≡ (10+10x+5x3 +(20+5x+15x2)z2 +(10+20x+15x2)z4)zdx (mod 25).

Step 4. Now we must reduce the differentials. We want to write each of the

Fi = φ
∗(ωi)

as

(M0iω0 +M1iω1)+∑d(xlz j) = (M0i +M1ix)zdx

in H1
MW(C′)−. We begin with

F0 ≡ (5xz2 +(5x+5x2)z4)zdx (mod 25)

and compute the appropriate list of differentials:

i j d(xiz j) (mod 25)
0 1 (13z2 +11z2x2)zdx
1 1 (12+16z2 +24z2x)zdx
2 1 (13x+16z2x+24z2x2)zdx
0 3 (14z4 +8z4x2)zdx
1 3 (9z2 +23z4 +22z4x)zdx
2 3 (10z2x+23z4x+22z4x2)zdx

Thus we wish to write (5x + 5x2)z4 as a linear combination of 14z4 + 8z4x2,
23z4 +22z4x, and 23z4x+22z4x2, all modulo 25 (we may ignore the lower pow-
ers of z present in the differentials, as we will take care of them in the steps to
come). We find that taking

F0−5d(z3)−10d(xz3)−20d(x2z3) (mod 25)

leaves us with

(10+5x)z2 zdx.

Now we wish to write (10 + 5x)z2 as a linear combination of 13z2 + 11z2x2,
16z2 +24z2x, and 16z2x+24z2x2, modulo 25. We find that taking

(10+5x)z2 zdx−10d(z)−5d(xz)−10d(x2z)

leaves us with

(15+20x)zdx.

Next, we reduce

F1≡ (10+10x+5x3+(20+5x+15x2)z2+(10+20x+15x2)z4)zdx (mod 25).



Note that this has an x3 zdx term, so we take care of this first:

F1−
1
3

d(x4z) = (13+2x+(13+10x+7x2)z2 +(10+20x+15x2)z4) zdx.

Now we proceed as in the case of F0, and we wish to write (10+20x+15x2)z4

as a linear combination of 14z4 + 8z4x2, 23z4 + 22z4x, and 23z4x+ 22z4x2, all
modulo 25. We find that taking

(13+2x+13z2+10z2x+7z2x2+10z4+20z4x+15z4x2)zdx−10d(z3)−15d(xz3)−5d(x2z3)

leaves us with

(13+2x+(3+10x+7x2)z2) zdx.

Finally, we wish to write (3+ 10x+ 7x2)z2 as a linear combination of 13z2 +
11z2x2, 16z2 +24z2x, and 16z2x+24z2x2, all modulo 25. We find that taking

(13+2x+(3+10x+7x2)z2 zdx−20d(z)−23d(xz)−13d(x2z)

leaves us with

(12+8x)zdx.

Step 5. Now we form the matrix M of the reduced differentials, where each reduced
differential gives us a column in the matrix of Frobenius. In our case, we have

M =

(
15 12
20 8

)
(mod 25). (4)

Moreover, we have that

φ
∗(ω0) = d(5z3 +10xz3 +20x2z3 +10z+5xz+10x2z)+M00ω0 +M10ω1

φ
∗(ω1) = d

(
1
3

x4z+10z3 +15xz3 +5x2z3 +20z+23xz+13x2z
)
+M10ω0 +M11ω1.

Recall that the characteristic polynomial of p-power Frobenius on an elliptic curve E is
x2−apx+ p, where ap = p+1−#E(Fp). As a consistency check, we can compute the
trace and determinant of M: we see that M has trace 23, which, modulo 25, is congruent
to a5 =−2 and determinant −120, which is p = 5 modulo 25.

Remark 2.6. Note that running this example in Sage [40] yields slightly different results:

sage: EllipticCurve(’37.a1’).matrix_of_frobenius(5,2)

[3*5 + 5^2 + O(5^3) 3 + 4*5 + O(5^2)]

[ 5 + 5^2 + O(5^3) 3 + 5 + O(5^2)]



That is, Sage computes the matrix of Frobenius to be
(

15 23
5 8

)
(mod 25).

Why this discrepancy? This is because the Sage implementation of matrix of frobenius

is internally computing the matrix of Frobenius on “37.a1” using a different model of
the elliptic curve: y2 = x3−16x+16 rather than the model y2 = x3− x+ 1

4 .
Note that the matrix produced by Sage also has trace 23 mod 25 and determinant

5 mod 25. By adjusting the internals of matrix of frobenius to take in a different
model or by telling Sage that the curve is a hyperelliptic curve, it is not difficult to check
Sage’s computation of the matrix of Frobenius of y2 = x3− x+ 1

4 :

sage: R.<x> = QQ[’x’]

sage: H = HyperellipticCurve(x^3 - x + 1/4)

sage: H.matrix_of_frobenius(5,2)

[ 3*5 + O(5^2) 2 + 2*5 + O(5^2)]

[ 4*5 + O(5^2) 3 + 5 + O(5^2)]

which indeed agrees with our computation (4) above.

2.5. Generalizations and improvements

Kedlaya’s algorithm has since been generalized to arbitrary hyperelliptic curves (over
fields of even characteristic [21], even degree models [24]), superelliptic curves [23], as
well as more generally to nondegenerate curves [13]. The original algorithm has linear
runtime dependence on the prime p; Harvey [25] gave a variant of this algorithm for
hyperelliptic curves which reduced this to p1/2. Recently, Minzlaff [36], building on the
work of [25,23], produced the analogous algorithm for superelliptic curves.

3. Coleman integration

In the 1980s, Coleman formulated a p-adic theory of path integration [15,17,19]. This
integration theory, now known as Coleman integration, has numerous applications in
arithmetic geometry. At the end of the next section, we describe a variation on the method
of Chabauty-Coleman [16] to find rational points on curves. For more about the method
of Chabauty-Coleman, see Siksek’s lectures in this volume. For a modern overview of
the integration theory, see [12].

A key part of Coleman’s construction is analytic continuation along Frobenius: us-
ing Frobenius to fix the global constant of integration throughout the domain of integra-
tion. In [7], this construction was made explicit by using Kedlaya’s algorithm and was
used to give algorithms to compute single Coleman integrals on odd degree models of
hyperelliptic curves. We describe the results of [7] in this section. For similar results in
the case of even degree models of hyperelliptic curves, see [2].

3.1. Tiny Coleman integrals and local coordinates

Here we describe how to compute single Coleman integrals on a hyperelliptic curve. We
retain our notation from §2. Suppose we are given points P,Q ∈ C(K), and a positive



integer m such that the residue fields of P,Q are contained in Fpm . We fix the basis of
H1

MW (C′)− to be

ωi = xi dx
2y

(i = 0, . . . ,2g−1). (5)

We restrict to considering odd 1-forms, those negated by the hyperelliptic involution,
since even 1-forms can be integrated directly in terms of x, as in Proposition 1 of [7].
Since every odd 1-form ω can be written in the form

ω = dh+
2g−1

∑
i=0

ciωi (6)

by Kedlaya’s algorithm (Algorithm 1), we focus our attention on computing the integrals
of basis differentials.

A few definitions are in order. Let CQ denote the generic fiber of C as a rigid analytic
space, and let C denote the special fiber of C. There is a natural reduction map from CQ
to C. The inverse image of any point of C is a subspace of CQ isomorphic to an open unit
disk. We call such a disk a residue disk of C.

Algorithms for computing definite Coleman integrals differ based on the residue
disks of the endpoints of integration: the first consideration is whether the endpoints lie in
the same residue disk. If the endpoints do not lie in the same residue disk, we will further
distinguish cases based on whether the residue disks correspond to non-Weierstrass or
Weierstrass points. Since we will often distinguish between such residue disks, we will
refer to non-Weierstrass residue disks and Weierstrass residue disks of C, corresponding
to non-Weierstrass and Weierstrass points of C.

When P,Q are in the same residue disk, computing the Coleman integral is accom-
plished by a “tiny integral”: computing a parametrization of the path between P,Q and
using change of variables to integrate along that path. For this, we introduce algorithms
to compute local coordinates. Let K(C) denote the field of rational functions of C. Recall
that a local parameter or a local coordinate at a K-rational point P is a function t ∈K(C)
such that ordP(t) = 1.

Here we record our local coordinate algorithms:

Algorithm 2 Local coordinate at a point in a non-Weierstrass residue disk
Input: A point P = (a,b) in C(K) in a non-Weierstrass residue disk and precision n.
Output: A parametrization (x(t),y(t)) at P in terms of a local coordinate.
1. Let x(t) = t +a, where t is a local coordinate.
2. Solve for y(t) =

√
f (x(t)) by Newton’s method: take y0(t) = b, then set

yi(t) =
1
2

(
yi−1(t)+

f (x(t))
yi−1(t)

)
, i≥ 1

with yi(t)→ y(t). The number of iterates i to be taken depends on the necessary power
series precision; for precision O(tn), one can take i to be dlog2 ne.



Algorithm 3 Local coordinate at a point in a finite Weierstrass residue disk
Input: A point P = (a,b) in C(K) in a finite Weierstrass residue disk and precision n.
Output: A parametrization (x(t),y(t)) at P in terms of a local coordinate.
1. Let y(t) = t +b, where t is a local coordinate.
2. Iteratively solve for x(t) as follows: take x0(t) = a; then Newton’s method yields

xi(t) = xi−1(t)−
f (xi−1(t))− y(t)2

f ′(xi−1(t))
, i≥ 1

with xi(t)→ x(t). The number of iterates i to be taken depends on the necessary power
series precision; for precision O(tn), one can take i to be dlog2 ne.

Finally for the case of infinity, since y2 = f (x), where deg f (x) = 2g+ 1, we have
that x has a pole of order 2 at ∞, while y has a pole of order 2g+1 at ∞. Let t = xg

y be the
local parameter at ∞. To find the parametrization, we do as follows:

Algorithm 4 Local coordinate at infinity
Input: The point P∞ above x = ∞ on C and precision n.
Output: A local coordinate (x(t),y(t)) at P∞ such that t has a zero at ∞.

1. Take x0 = t−2, let h(x, t) =
(

xg

t

)2
− f (x) and compute h′(x, t) = ∂h(x,t)

∂x . Newton’s
method yields

xi(t) = xi−1(t)−
h(xi−1(t), t)
h′(xi−1(t), t)

, i≥ 1

with xi(t)→ x(t). The number of iterates i to be taken depends on the necessary power
series precision; for n digits of precision in t, i can be taken to be dlog2 ne.

2. Take y(t) = (x(t))g

t .

Example 3.1. Let C be the hyperelliptic curve

y2 = x(x−2)(x+2)(x+3)(x+7),

as in Müller’s lectures in this volume, and consider the points P1 = (−1,6) and P2 =
(−4,12) on C. Using Sage, we can compute a parametrization (x(t),y(t)) at P1 in terms
of a local coordinate t:

x(t) =−1+ t,

y(t) = 6+ t− 7
2

t2− 1
2

t3− 25
48

t4− 35
288

t5− 263
864

t6 +O(t7).

Similarly, at P2, we have



x(t) =−4+ t,

y(t) = 12− 19
2

t− 19
32

t2 +
61
256

t3− 5965
24576

t4− 81805
589824

t5− 3515573
28311552

t6 +O(t7).

At the Weierstrass point (2,0), we have

x(t) = 2+
1

360
t2− 191

23328000
t4 +

7579
188956800000

t6 +O(t7),

y(t) = t.

At ∞, we have

x(t) = t−2−10−17t2−130t4−1105t6 +O(t7)

y(t) = t−5 +−20t−3 +66t−1 +80t +679t3 +O(t4).

We now use these local coordinate algorithms to compute “tiny” Coleman integrals.
We refer to any Coleman integral of the form

∫ Q
P ω in which P,Q lie in the same residue

disk (Weierstrass or not) as a tiny integral. As an easy first case, we give an algorithm to
compute tiny integrals of basis differentials.

Algorithm 5 Tiny Coleman integrals
Input: Points P,Q ∈ C(K) in the same residue disk and a basis differential ωi without
poles in the disk.
Output: The integral

∫ Q
P ωi.

1. Using the relevant algorithm (Algorithm 2, 3 or 4), compute a parametrization
(x(t),y(t)) at P in terms of a local coordinate t.

2. Formally integrate the power series in t:

∫ Q

P
ωi =

∫ Q

P
xi dx

2y
=
∫ t(Q)

0

x(t)i

2y(t)
dx(t)

dt
dt.

One useful computation of tiny integrals involves the Teichmüller point in a non-
Weierstrass residue disk.

Example 3.2. Let C be the hyperelliptic curve

y2 = x(x−2)(x+2)(x+3)(x+7)

as in Example 3.1 and let K =Q13. We consider P2 = (−4,12) ∈C(K).
The Teichmüller point T in the residue disk of P2 is the point fixed by Frobenius φ :

that is, φ(T ) = T , and x(T )≡ x(P2) (mod 13),y(T )≡ y(P2) (mod 13). We can find the
Teichmüller point by taking the Teichmüller lift of x(P2) and then using the equation of
the curve to solve for the y-coordinate, choosing the correct “sign” of the square root by
considering y(P2) (mod 13). We find that the Teichmüller point in the disk of P2 is



T = (9+13+6 ·132 +3 ·133 +5 ·134 +10 ·135 +8 ·136 +8 ·137 +O(138),

12+7 ·13+2 ·132 +133 +6 ·134 +5 ·135 +2 ·136 +6 ·137 +O(138)).

Example 3.3. Let C be the hyperelliptic curve

y2 = x(x−2)(x+2)(x+3)(x+7)

as in Example 3.1, and let K = Q13. We consider P2 = (−4,12) ∈ C(K) and the Te-
ichmüller point in its residue disk, computed in Example 3.2. Using the local coordinate
at P2 computed in Example 3.1, we compute the integral of ω0 between P2 and T :

∫ T

P2

ω0 = 12 ·13+11 ·132 +3 ·133 +4 ·134 +135 +11 ·136 +3 ·137 +O(138).

3.2. Single Coleman integrals

To consider more general integrals, we recall a theorem of Coleman. Let ω be a 1-form,
with (ω)∞ denoting its polar support. For P,Q ∈ C(K), Coleman showed in [17] the
existence of the definite integral

∫ Q
P ω ∈ K with the following properties.

Theorem 3.4. Let ω,η be 1-forms on C and P,Q,R ∈C(K). The definite Coleman inte-
gral has the following properties:

1. Linearity:
∫ Q

P (aω +bη) = a
∫ Q

P ω +b
∫ Q

P η , for P,Q 6∈ (ω)∞∪ (η)∞.
2. Additivity:

∫ R
P ω =

∫ Q
P ω +

∫ R
Q ω , for P,Q,R /∈ (ω)∞.

3. Change of variables: The Coleman integral can also be defined on certain sub-
domains on the curve, called wide open spaces. If U ⊂C is a wide open space,
U ′ ⊂ C′ is another such space, and φ : U → U ′ a rigid analytic map between
these wide opens, then

∫ Q
P φ ∗ω =

∫ φ(Q)
φ(P) ω .

4. Fundamental theorem of calculus:
∫ Q

P d f = f (Q)− f (P) for a meromorphic func-
tion f on a wide open subset.

Proof. See [17, Thm 2.3, Prop 2.4, Thm 2.7] for details.

Remark 3.5. Note that the lift of p-power Frobenius as in §2 is a rigid analytic map.

Now we may compute integrals of the form
∫ Q

P ωi in which P,Q ∈C(K) lie in dis-
tinct non-Weierstrass residue disks. To do this, we use Dwork’s principle of analytic
continuation along Frobenius, in the form of Kedlaya’s algorithm (Algorithm 1).



Algorithm 6 Coleman integration in non-Weierstrass disks
Input: The basis differentials (ωi)

2g−1
i=0 , points P,Q ∈ C(K) in non-Weierstrass residue

disks, and a positive integer m such that the residue fields of P,Q are contained in Fpm .

Output: The integrals
(∫ Q

P ωi

)2g−1

i=0
.

1. Using Kedlaya’s algorithm (Algorithm 1), calculate the action of the m-th power of
Frobenius on each basis element:

(φ m)∗ωi = dhi +
2g−1

∑
j=0

Mt
i jω j.

2. By changing variables and breaking up the path from P to Q, we obtain

(Mt − I)


...∫ Q

P ω j
...

=


...

hi(P)−hi(Q)−
∫ φm(P)

P ωi−
∫ Q

φm(Q)
ωi

...

 . (7)

Since the eigenvalues of the matrix M are algebraic integers of C-norm pm/2 6= 1 (see
[26, §2]), the matrix Mt − I is invertible, and we may solve (7) to obtain the integrals∫ Q

P ωi.

Remark 3.6. To compute the action of φ m, first perform Algorithm 1 to write

φ
∗
ωi = dgi +

2g−1

∑
j=0

Bt
i jω j,

where Bt denotes the transpose of B, the matrix of p-power Frobenius. We compute
the action of φ m by iteratively computing the action of φ , using the vector of functions
g = (gi) and the matrix B above to write

(φ m)∗ωi = dhi +
2g−1

∑
j=0

Mt
i jω j,

where

h = φ
m−1(g)+

m−1

∑
i=1

φ
m−1
K (Bt) · · ·φ i

K(B
t)φ i−1(g)

Mt = φ
m−1
K (Bt) · · ·φK(Bt)Bt . (8)

Remark 3.7. We obtain (7) as follows. By change of variables,



∫
φm(Q)

φm(P)
ωi =

∫ Q

P
(φ m)∗ωi

=
∫ Q

P
(dhi +

2g−1

∑
j=0

Mt
i jω j)

= hi(Q)−hi(P)+
2g−1

∑
j=0

Mt
i j

∫ Q

P
ω j.

Adding
∫ φm(P)

P ωi +
∫ Q

φm(Q)
ωi to both sides of this equation yields

∫ Q

P
ωi =

∫
φm(P)

P
ωi +

∫ Q

φm(Q)
ωi +hi(Q)−hi(P)+

2g−1

∑
j=0

Mt
i j

∫ Q

P
ω j,

which is equivalent to (7).

Finally, given an arbitrary odd differential ω , we use the previous algorithms, lin-
earity, and the fundamental theorem of calculus to recover the integral of ω between
non-Weierstrass points P and Q:

Algorithm 7 Coleman integral of an odd ω

Input: Non-Weierstrass points P,Q ∈C(K) and an odd differential ω holomorphic out-
side Weierstrass disks.
Output: The integral

∫ Q
P ω .

1. Use Kedlaya’s algorithm (Algorithm 1) to write ω in the form

ω = dh+ c0ω0 + · · ·+ c2g−1ω2g−1

2. For each ωi, compute
∫ Q

P ωi.
3. Use the fundamental theorem of calculus and linearity to obtain the integral

∫ Q

P
ω = h(Q)−h(P)+ c0

∫ Q

P
ω0 + · · ·+ c2g−1

∫ Q

P
ω2g−1.

We now consider the case where P,Q lie in different residue disks, at least one of
which is Weierstrass. Note that because a differential ω of the form (6) is not meromor-
phic on Weierstrass residue disks, we cannot always define

∫ Q
P ω . To ease exposition, we

will assume that ω is everywhere meromorphic, with no poles in the residue disks of P
and Q. For the case where ω is allowed a simple pole in one of the relevant residue disks,
see [6].

First, we show how having a Weierstrass endpoint can simplify the computation of
single Coleman integrals.

Lemma 3.8. Let P,Q ∈C(K), with P a Weierstrass point. Let ω be an odd, everywhere
meromorphic differential on C with no poles in the residue disks of P and Q. Then for



ι the hyperelliptic involution,
∫ Q

P ω = 1
2
∫ Q

ι(Q)
ω . In particular, if Q is also a Weierstrass

point, then
∫ Q

P ω = 0.

Proof. Let I :=
∫ Q

P ω =
∫ ι(Q)

P (−ω) =
∫ P

ι(Q) ω . Then by additivity in the endpoints, we

have
∫ Q

ι(Q)
ω = 2I, from which the result follows.

More generally, if P belongs to a finite Weierstrass residue disk while Q does not,
we can find the characteristic zero Weierstrass point P′ in the disk of P, then apply
Lemma 3.8 to yield

∫ Q
P ω =

∫ P′
P ω + 1

2
∫ Q

ι(Q)
ω.

It is worth noting that the strategy of Lemma 3.8 does not necessarily generalize to
higher n-fold iterated Coleman integrals: in particular, a double integral of basis differ-
entials between two Weierstrass points can be nonzero! For an example of this, see [3,
Example 7.14].

With that in mind, we continue by describing a different approach for computing
Coleman integrals with an endpoint in a Weierstrass disk; this approach does generalize
to iterated Coleman integrals. We may reduce to the case where P lies in a Weierstrass
residue disk but Q does not, since we can always write

∫ Q
P ω =

∫ R
P ω +

∫ Q
R ω for an

auxiliary point R in a non-Weierstrass residue disk.
To carry out Algorithm 6, one must be able to evaluate the function fi (an ele-

ment of A†) on each of the endpoints of integration. In particular, while fi does not
necessarily converge at P, it does converge at any point S near the boundary of the
disk. To use this observation, we break up the path between P and Q using S, writing∫ Q

P ωi =
∫ S

P ωi +
∫ Q

S ωi for suitable S in the disk of P. Then the integral between P and S
can be computed using a tiny integral, and the integral from S to Q can be computed using
Algorithm 6, which by construction, now has the aforementioned function fi converging
on both endpoints. However, note that this approach is computationally quite expensive,
since by requiring S to be near the boundary of its residue disk, S must be defined over a
highly ramified extension of Qp. We have the following algorithms:

Algorithm 8 Finding a near-boundary point in a finite Weierstrass disk
Input: A finite Weierstrass point P ∈C(Qp), and a positive integer d.
Output: A point S = (x(p1/d), p1/d) in the disk of P defined over the totally ramified
extension Qp(p1/d).
1. Compute a parametrization (x(t), t) at P in terms of the local coordinate t.
2. Evaluate the parametrization at t = p1/d . This is S.

Algorithm 9 Coleman integration in a finite Weierstrass disk
Input: A finite Weierstrass point P, a positive integer d, a non-Weierstrass point Q, and
a basis differential ωi.
Output: The integral

∫ Q
P ωi.

1. Use Algorithm 8 to find S. Keep the local coordinate (x(t), t) at P.

2. Compute
∫ S

P ωi as a tiny integral:
∫ S

P ωi =
∫ p1/d

0
x(t)idx(t)

2t dt.
3. Use Algorithm 6 to compute

∫ Q
S ωi.

4. Use additivity in endpoints to recover
∫ Q

P ωi =
∫ S

P ωi +
∫ Q

S ωi.



Example 3.9. We compute Coleman integrals on our running genus 2 curve (see Exam-
ples 3.1-3.3) given by

C : y2 = x(x−2)(x+2)(x+3)(x+7)

over K =Q13. Consider P1 = (−1,6),P2 = (−4,12),P3 = (3,30), and ι(P3) = (3,−30)
in C(K). Using Algorithm 6, we compute the following Coleman integrals on basis dif-
ferentials:


∫ P1

P3
ω0∫ P1

P3
ω1∫ P1

P3
ω2∫ P1

P3
ω3

=


2 ·13+6 ·133 +134 +5 ·135 +11 ·136 +3 ·137 +O(138)

10 ·13+6 ·132 +8 ·134 +10 ·135 +4 ·136 +10 ·137 +O(138)
5+7 ·13+8 ·132 +133 +3 ·134 +5 ·135 +9 ·136 +7 ·137 +O(138)

6+6 ·13+4 ·132 +2 ·133 +4 ·134 +12 ·135 +9 ·136 +2 ·137 +O(138)

 ,


∫ P2

ι(P3)
ω0∫ P2

ι(P3)
ω1∫ P2

ι(P3)
ω2∫ P2

ι(P3)
ω3

=


3 ·13+4 ·132 +12 ·133 +2 ·134 +12 ·135 +10 ·136 +12 ·137 +O(138)

6 ·132 +9 ·133 +2 ·134 +10 ·135 +12 ·136 +8 ·137 +O(138)
3+7 ·13+12 ·132 +10 ·133 +6 ·134 +2 ·135 +2 ·136 +3 ·137 +O(138)

8+9 ·13+8 ·132 +4 ·133 +3 ·134 +6 ·135 +2 ·136 +9 ·137 +O(138)

 .

3.3. Iterated Coleman integrals

Coleman’s theory of integration is not limited to single integrals; it gives rise to an entire
class of locally analytic functions, the Coleman functions, on which antidifferentiation is
well-defined. In other words, one can define n-fold iterated p-adic integrals [11,15]

∫ Q

P
ξn · · ·ξ1

which behave formally like iterated path integrals

∫ 1

0

∫ t1

0
· · ·
∫ tn−1

0
fn(tn) · · · f1(t1)dtn · · · dt1.

Kedlaya’s algorithm can also be applied to compute these iterated Coleman inte-
grals. We give an overview of these methods, following [3].

We set the following notation

∫ Q

P
ξ1ξ2 · · ·ξn−1ξn :=

∫ Q

P
ξ1(R1)

∫ R1

P
ξ2(R2) · · ·

∫ Rn−2

P
ξn−1(Rn−1)

∫ Rn−1

P
ξn,

for a collection of dummy parameters R1, . . . ,Rn−1 and 1-forms ξ1, . . . ,ξn.
We begin with an algorithm to compute tiny iterated integrals.



Algorithm 10 Tiny iterated integrals
Input: Points P,Q ∈C(K) in the same residue disk (neither equal to the point at infinity)
and differentials ξ1, . . . ,ξn without poles in the disk of P.
Output: The integral

∫ Q
P ξ1ξ2 · · ·ξn.

1. Compute a parametrization (x(t),y(t)) at P in terms of a local coordinate t, using
Algorithm 2 or 3.

2. For each k, write ξk(x,y) in terms of t: ξk(t) := ξk(x(t),y(t)).
3. Let In+1(t) := 1.
4. Compute, for k = n, . . . ,2, in descending order,

Ik(t) =
∫ Rk−1

P
ξkIk+1

=
∫ t(Rk−1)

0
ξk(u)Ik+1(u),

with Rk−1 in the disk of P.
5. Upon computing I2(t), we arrive at the desired integral:

∫ Q

P
ξ1ξ2 · · ·ξn = I1(t) =

∫ t(Q)

0
ξ1(u)I2(u).

For ease of exposition, we focus on the case of n= 2 and assume P,Q∈C(Qp) when
discussing the iterated analogue of the fundamental linear system (Algorithm 11). First,
we need an analogue of “additivity in endpoints” (Theorem 3.4(2)) for double integrals.
Let P′ and Q′ be in the disks of P and Q, respectively.

Lemma 3.10 (Link lemma for double integrals). Suppose we have two differential 1-
forms ξ0,ξ1. Then we have

∫ Q

P
ξ0ξ1 =

∫ P′

P
ξ0ξ1 +

∫ Q′

P′
ξ0ξ1 +

∫ Q

Q′
ξ0ξ1 +

∫ P′

P
ξ1

∫ Q

P′
ξ0 +

∫ Q′

P′
ξ1

∫ Q

Q′
ξ0.

Using Lemma 3.10, we may link double integrals between different residue disks:

∫ Q

P
ωiωk =

∫ P′

P
ωiωk +

∫ Q′

P′
ωiωk +

∫ Q

Q′
ωiωk +

∫ P′

P
ωk

∫ Q

P′
ωi +

∫ Q′

P′
ωk

∫ Q

Q′
ωi. (9)

We can directly compute double integrals using a linear system. Indeed, using
Lemma 3.10, we take φ(P) and φ(Q) to be the points in the disks of P and Q, respec-
tively, which gives

∫ Q

P
ωiωk =

∫
φ(P)

P
ωiωk +

∫
φ(Q)

φ(P)
ωiωk +

∫ Q

φ(Q)
ωiωk +

∫
φ(P)

P
ωk

∫ Q

φ(P)
ωi +

∫
φ(Q)

φ(P)
ωk

∫ Q

φ(Q)
ωi. (10)

Then we expand the following



∫
φ(Q)

φ(P)
ωiωk =

∫ Q

P
φ
∗(ωiωk) =

∫ Q

P
φ
∗(ωi)φ

∗(ωk) (11)

=
∫ Q

P
(d fi +

2g−1

∑
j=0

Mt
i jω j)(d fk +

2g−1

∑
j=0

Mt
k jω j) (12)

= cik +
∫ Q

P

(
2g−1

∑
j=0

Mt
i jω j

)(
2g−1

∑
j=0

Mt
k jω j

)
, (13)

where

cik =
∫ Q

P
d fi(R)( fk(R))− fk(P)( fi(Q)− fi(P))+

∫ Q

P

2g−1

∑
j=0

Mt
i jω j(R)( fk(R)− fk(P))

+ fi(Q)
∫ Q

P

2g−1

∑
j=0

Mt
k jω j−

∫ Q

P
fi(R)(

2g−1

∑
j=0

Mt
k jω j(R)).

Putting together (10) and (11), we get


...∫ Q

P ωiωk
...

= (I4g2×4g2 − (Mt)⊗2)−1



...

cik−
∫ P

φ(P) ωiωk−
(∫ Q

P ωi

)(∫ P
φ(P) ωk

)
−
(∫ φ(Q)

Q ωi

)(∫ φ(Q)
φ(P) ωk

)
+
∫ Q

φ(Q)
ωiωk

...

 .

(14)
This gives us the following algorithm:

Algorithm 11 Double Coleman integration between non-Weierstrass endpoints
Input: The basis differentials (ωi)

2g−1
i=0 , points P,Q ∈C(Qp) in non-Weierstrass residue

disks or in Weierstrass disks in the region of convergence.

Output: The double integrals
(∫ Q

P ωiω j

)2g−1

i, j=0
.

1. Use Algorithm 6 to compute the single integrals
∫ Q

P ωi,
∫ φ(Q)

φ(P) ωi for all i.

2. Use Algorithm 10 to compute
∫ P

φ(P) ωiωk,
∫ Q

φ(Q)
ωiωk for all i,k

3. Compute the constants cik for all i,k using single integrals.
4. Recover the double integrals using the linear system


...∫ Q

P ωiωk
...

= (I4g2×4g2 − (Mt)⊗2)−1



...

cik−
∫ P

φ(P) ωiωk−
(∫ Q

P ωi

)(∫ P
φ(P) ωk

)
−
(∫ φ(Q)

Q ωi

)(∫ φ(Q)
φ(P) ωk

)
+
∫ Q

φ(Q)
ωiωk

...

 .



4. p-adic height pairings

Much like the canonical (Néron-Tate) height pairing plays a crucial role in the arithmetic
of abelian varieties number fields, so do p-adic height pairings [33,39,38]. Throughout
this section, we assume that p≥ 5 is a prime of good and ordinary reduction.

4.1. p-adic heights on an elliptic curve

In 2006, Mazur-Stein-Tate [32] gave an algorithm for computing the cyclotomic p-adic
height pairing2 on an elliptic curve over Q. This p-adic height pairing is used to de-
fine the p-adic regulator appearing in Mazur-Tate-Teitelbaum’s formulation of the p-adic
Birch and Swinnerton-Dyer conjecture [35].

Let E/Q be an elliptic curve with good, ordinary reduction at p and fix a Weierstrass
model for E of the form y2 +a1xy+a3y = x3 +a2x2 +a4x+a6. Let O denote the point
at infinity. Let P ∈ E(Q) be a non-torsion point which reduces to O mod p and to the
connected component of the Néron model E 0

` at bad primes `. Then the cyclotomic p-
adic height pairing of P is given by the following formula:

〈P,P〉=−2logp

(
σp(P)
D(P)

)
,

where D(P) is the denominator of P and σp is the p-adic sigma function [34]. Note
that the (symmetric, bilinear) pairing induces a quadratic form hp(P) =− 1

2 〈P,P〉, which
allows us to extend the height to the entire Mordell-Weil group by hp(nP) = n2hp(P).

The denominator of P∈E(Q), denoted D(P), is quite simple to compute. For a point
P∈ E(Q) written as

(
a

d2 ,
b

d3

)
with (a,d) = (b,d) = 1 and a,b,d ∈Z, we have D(P) = d.

By the work of Mazur-Tate [34], we have the following characterization of the p-
adic sigma function of E:

Theorem 4.1. There is precisely one odd function σp(t) = t+ · · · ∈ tZp[[t]] and constant
c ∈ Zp that together satisfy the p-adic differential equation

x(t)+ c =− d
ω

(
1

σp

dσp

ω

)
,

where ω is the invariant differential dx
2y+a1x+a3

associated to the model of E above.

An important part of the method of Mazur-Stein-Tate is a fast way of computing the
p-adic sigma function, which in turn, relies on computing a special value of the p-adic
modular form E2. This special value is found by carrying out Kedlaya’s algorithm! We
give a short sketch of the circle of ideas involved, following [32].

The constant c appearing in the differential equation for the p-adic sigma function is

defined to be a2
1+4a2

12 − 1
12 E2(E,ω0), where E2(E,ω0) is the special value of the p−adic

weight 2 Eisenstein series E2 at (E,ω0). Mazur-Stein-Tate gives the following algorithm
for computing this special value:

2Note that our normalization of the p-adic height pairing differs from that in [32] by a factor of p for
consistency with the p-adic Birch and Swinnerton-Dyer conjecture, which is also the convention in Sage.



Algorithm 12 Computing E2(E,ω0)
Input: An elliptic curve E/Q, a good ordinary prime p≥ 5, and desired digits of preci-
sion n
Output: E2(E,ω0) to precision O(pn)

1. Compute a minimal model of E and let c4 and c6 denote its c-invariants. Let a4 =− c4
48

and a6 =− c6
864 .

2. Apply Kedlaya’s algorithm (Algorithm 1) to the curve y2 = x3 + a4x+ a6 to obtain
the matrix of Frobenius M.

3. Compute Mn, and denote the entries of its second column as a01,a11, so that
Mn(ω1) = a01ω0 +a11ω1.

4. The special value of E2(E,ω0) is given by −12 a01
a11

. Output this value.

Example 4.2. Let E = “37.a1′′ be given by the model y2 = x3− x+ 1
4 . as in Section 2.4.

Using Sage, we compute the matrix of Frobenius to higher precision:

sage: H = HyperellipticCurve(x^3 - x + 1/4)

sage: M = H.matrix_of_frobenius(5)

To compute the special value of E2 to precision O(55), we compute the 5th power
of the matrix and use its entries:

sage: M5 = M^5

sage: -12*M5[0,1]/M5[1,1] + O(5^5)

2 + 4*5 + 2*5^3 + 5^4 + O(5^5)

We can check that this agrees with the built-in Sage method for computing the spe-
cial value of E2:

sage: E = EllipticCurve([-1,1/4])

sage: E.padic_E2(5,prec=5)

2 + 4*5 + 2*5^3 + 5^4 + O(5^5)

Using the algorithm for the special value of E2, Mazur-Stein-Tate gives an algorithm
for computing the p-adic height on E:

Algorithm 13 Computing the cyclotomic p-adic height pairing on E/Q
Input: An elliptic curve E/Q, a good ordinary prime p ≥ 5, a non-torsion P ∈ E(Q)
Output: The cyclotomic p-adic height pairing 〈P,P〉
1. Compute a positive integer m such that mP reduces to O mod p and to E 0

` at all bad
primes `. Let Q := mP and write Q = (x,y)

2. Compute the denominator D(Q) of Q

3. Compute σp(t) using [32, Algorithm 3.1] and Algorithm 12 and set s = σp

(
− x

y

)
.

4. Compute hp(Q) = logp

(
s

D(Q)

)
; then hp(P) = 1

m2 hp(Q). Output 〈P,P〉=−2hp(P).



Example 4.3. We use Sage to compute the p-adic regulators of the rank 1 elliptic curve
“37.a1” for a small range of values p. Note that since E has rank 1, each value of the
p-adic regulator is merely the pairing of a Mordell-Weil generator with itself:

sage: E = EllipticCurve(’37.a1’)

sage: for p in prime_range(5,20):

....: if E.is_good(p) and E.is_ordinary(p):

....: E.padic_regulator(p,5)

....:

5 + 5^2 + 5^3 + O(5^5)

7 + 7^2 + 3*7^3 + 7^4 + O(7^5)

7*11 + 9*11^2 + 7*11^3 + 8*11^4 + O(11^5)

12*13^2 + 5*13^3 + 9*13^4 + O(13^5)

4.2. p-adic heights on Jacobians of hyperelliptic curves

The work of Coleman-Gross [20] gave an interpretation of a global p-adic height pairing
on the Jacobian of a curve in terms of a sum of local height pairings. In particular, the
local height pairing at a prime above p was given in terms of a Coleman integral. This
was revisited in [5] using a variant of Coleman reciprocity [18] and explicit Coleman
integration to compute the component at p of the Coleman-Gross p-adic height pairing.

Recently, the explicit computation of local height pairings [5,37] on hyperellip-
tic curves was used as a means of producing examples of Kim’s nonabelian Chabauty
method, in the case of hyperelliptic curves with genus equal to Mordell-Weil rank [6].
We describe this “quadratic Chabauty” method below.

We set some notation. Let C : y2 = f (x) be a hyperelliptic curve as before, with the
additional hypothesis that f (x) ∈ Z[x]. Let J denote the Jacobian of C. Let ω̄i denote
a differential 1-form dual to the holomorphic basis differential ωi with respect to the
cup product pairing. For i ∈ {0, . . . ,g− 1}, let fi(P) =

∫ P
∞

ωi and fi(D) =
∫

D ωi, and let
gi j(Dk,Dl) =

1
2 ( fi(Dk) f j(Dl)+ f j(Dk) fi(Dl)).

Theorem 4.4 (“Quadratic Chabauty”). Suppose that the Mordell-Weil rank of J(Q) is
g and that the fi induce linearly independent Qp-valued functionals on J(Q)⊗Q. Then
there exist constants αi j ∈Qp, i, j ∈ {0, . . . ,g−1} such that

ρ :=−2
∫ P

∞

g−1

∑
i=0

ωiω̄i−∑
i≤ j

αi jgi j (15)

only takes values on C(Z[1/p]) in an effectively computable finite set T .

In forthcoming work with Besser and Müller, we show how to combine quadratic
Chabauty with the Mordell-Weil sieve to prove that the set of integral points found by ρ

and T is complete. Here we give an example showing how to use quadratic Chabauty to
find integral points on C.

Example 4.5. Consider the hyperelliptic curve

C : y2 = x(x−2)(x+2)(x+3)(x+7)



over Q13, with P1 = (−1,6),P2 = (−4,12),P3 = (3,30). In §4.8 of Müller’s lecture notes
in this volume, the Mordell-Weil rank of the Jacobian of this curve is computed to be 2.
We take as generators for the free part of the Mordell-Weil group

D1 = P1−P3,

D2 = P2− ι(P3).

We show how to carry out quadratic Chabauty on C using the prime p = 13 to find
integral points on this model of C.

Given the reduction type of the curve, Müller computed the set T :

{a log(2)+b log(3)+c log(5)+d log(7) | a∈{0,1,5/4,3/2},b∈{0,1/2,3/4,1},c,d ∈{0,1/2}}.

Using [10, Algorithm 3.8], compute the global 13-adic height pairings:

〈D1,D1〉= 12 ·13+2 ·132 +7 ·133 +134 +135 +10 ·136 +11 ·137 +138 +10 ·139 +O(1310),

〈D1,D2〉= 9 ·13+2 ·132 +133 +2 ·134 +6 ·135 +6 ·136 +4 ·139 +O(1310),

〈D2,D2〉= 2 ·13+2 ·132 +7 ·133 +8 ·134 +6 ·135 +8 ·136 +4 ·137 +10 ·138 +9 ·139 +O(1310).

We find the αi j using the matrix of Coleman integrals evaluated at D1,D2 (see Ex-
ample 3.9) and the global 13-adic heights computed above:

α00
α01
α11

=


∫

D1
ω0
∫

D1
ω0

∫
D1

ω0
∫

D1
ω1

∫
D1

ω1
∫

D1
ω1∫

D1
ω0
∫

D2
ω0

1
2

(∫
D1

ω0
∫

D2
ω1 +

∫
D1

ω1
∫

D2
ω0

) ∫
D1

ω1
∫

D2
ω1∫

D2
ω0
∫

D2
ω0

∫
D2

ω0
∫

D2
ω1

∫
D2

ω1
∫

D2
ω1


−1 〈D1,D1〉

〈D1,D2〉
〈D2,D2〉



=

 6 ·13−1 +5+132 +8 ·133 +4 ·134 +10 ·135 +9 ·136 +5 ·137 +7 ·138 +O(139)
6 ·13−1 +8 ·13+12 ·132 +4 ·133 +6 ·135 +11 ·136 +11 ·137 +5 ·138 +O(139)

7 ·13−1 +8+11 ·13+3 ·133 +7 ·134 +5 ·135 +136 +9 ·138 +O(139)

 .

Using the αi j, we can construct the p-padic power series expansion of ρ (see (15))
and set it equal to each of the values in the set T . The theorem tells us that the integral
points on C will be among the Z13-points satisfying this relationship. More precisely, for
each of the following residue disks:

{(0,0),(2,0),(6,0),(10,0),(11,0),(9,±1),(4,±2),(7,±2),(8,±2),(3,±4),(12,±6)},

we use a local coordinate at a point in the disk to compute the Coleman integrals defining
ρ . Then for each t ∈ T , we compute the zeros of ρ− t and try to determine if any of the
zeros correspond to integral points on the curve.

For example, in the residue disk (7,2), we find the following points, noting the cor-
responding value of (a,b,c,d) giving a log(2)+b log(3)+ c log(5)+d log(7) = t ∈ T .



disk x(z) (a,b,c,d)
(7,2) 7+5 ·13+11 ·133 +8 ·134 +4 ·135 +3 ·137 +O(138) (0,0, 1

2 ,0)
7+3 ·13+6 ·132 +10 ·133 +3 ·134 +5 ·135 +7 ·136 +4 ·137 +O(138)

7+12 ·13+9 ·132 +9 ·133 +3 ·134 +12 ·135 +8 ·136 +3 ·137 +O(138) (0, 1
2 ,0,

1
2 )

7+9 ·13+4 ·132 +5 ·133 +12 ·134 +9 ·135 +3 ·136 +7 ·137 +O(138)
7+6 ·13+4 ·132 +6 ·133 +2 ·134 +10 ·135 +5 ·136 +10 ·137 +O(138) (0,1,0,0)

7+2 ·13+3 ·132 +133 +9 ·135 +9 ·136 +137 +O(138)
7+12 ·13+8 ·132 +6 ·133 +7 ·134 +2 ·135 +O(138) (0,1, 1

2 ,0)
7+9 ·13+5 ·132 +7 ·133 +10 ·134 +7 ·135 +7 ·136 +6 ·137 +O(138)

7+13+9 ·132 +7 ·133 +8 ·134 +2 ·135 +12 ·136 +8 ·137 +O(138) (1,0,0, 1
2 )

7+7 ·13+4 ·132 +11 ·133 +8 ·134 +11 ·135 +5 ·136 +8 ·137 +O(138)
7+11 ·13+9 ·132 +3 ·133 +8 ·134 +9 ·135 +4 ·136 +2 ·137 +O(138) (1,0, 1

2 ,0)
7+10 ·13+12 ·132 +4 ·133 +5 ·134 +9 ·135 +7 ·136 +6 ·137 +O(138)

7+6 ·13+11 ·132 +7 ·133 +134 +12 ·135 +7 ·136 +6 ·137 +O(138) (1,0, 1
2 ,

1
2 )

7+2 ·13+9 ·132 +4 ·133 +4 ·134 +6 ·136 +8 ·137 +O(138)
7+5 ·13+11 ·132 +10 ·133 +4 ·134 +12 ·135 +12 ·136 +5 ·137 +O(138) (1, 1

2 ,0,0)
7+3 ·13+8 ·132 +134 +135 +12 ·136 +7 ·137 +O(138)

7+13+3 ·132 +11 ·133 +11 ·134 +6 ·135 +9 ·136 +2 ·137 +O(138) (1, 1
2 ,

1
2 ,0)

7+7 ·13+10 ·132 +6 ·133 +7 ·134 +12 ·135 +4 ·136 +137 +O(138)
7+132 +133 +7 ·134 +2 ·135 +4 ·136 +10 ·137 +O(138) (1, 1

2 ,
1
2 ,

1
2 )

7+8 ·13+10 ·132 +7 ·133 +11 ·134 +7 ·135 +12 ·136 +5 ·137 +O(138)
7+5 ·13+132 +3 ·133 +8 ·134 +4 ·135 +7 ·136 +3 ·137 +O(138) (1, 3

4 ,0,
1
2 )

7+3 ·13+5 ·132 +10 ·133 +7 ·134 +7 ·135 +136 +5 ·137 +O(138)
7+13+2 ·132 +9 ·133 +9 ·134 +135 +4 ·136 +O(138) (1, 3

4 ,
1
2 ,

1
2 )

7+7 ·13+11 ·132 +10 ·133 +6 ·134 +7 ·135 +2 ·137 +O(138)

7+5 ·13+2 ·132 +4 ·133 +7 ·134 +5 ·135 +7 ·136 +8 ·137 +O(138) ( 5
4 ,0,0,0)

7+3 ·13+4 ·132 +133 +10 ·134 +9 ·135 +5 ·136 +9 ·137 +O(138)

7+13+6 ·132 +11 ·133 +8 ·134 +135 +2 ·136 +2 ·137 +O(138) ( 5
4 ,0,

1
2 ,0)

7+7 ·13+7 ·132 +9 ·134 +7 ·135 +10 ·137 +O(138)

7 ( 5
4 ,0,

1
2 ,

1
2 )

7+8 ·13+11 ·132 +2 ·133 +4 ·134 +9 ·135 +12 ·136 +3 ·137 +O(138)

7+5 ·13+10 ·132 +10 ·133 +5 ·134 +8 ·135 +6 ·136 +9 ·137 +O(138) ( 5
4 ,

3
4 ,

1
2 ,0)

7+3 ·13+9 ·132 +8 ·133 +10 ·134 +12 ·135 +12 ·136 +5 ·137 +O(138)

7+12 ·13+5 ·132 +5 ·133 +134 +7 ·135 +11 ·136 +3 ·137 +O(138) ( 5
4 ,1,0,0)

7+9 ·13+8 ·132 +5 ·133 +8 ·134 +3 ·135 +136 +11 ·137 +O(138)

7+5 ·13+6 ·133 +8 ·134 +7 ·135 +3 ·136 +3 ·137 +O(138) ( 5
4 ,1,

1
2 ,

1
2 )

7+3 ·13+6 ·132 +2 ·133 +5 ·134 +12 ·135 +11 ·136 +5 ·137 +O(138)
7+4 ·13+6 ·132 +3 ·133 +8 ·134 +7 ·136 +137 +O(138) ( 3

2 ,0,0,0)
7+4 ·13+4 ·132 +5 ·133 +4 ·134 +7 ·135 +2 ·136 +6 ·137 +O(138)

−6 ( 3
2 ,

1
2 ,0,0)

7+9 ·13+132 +5 ·133 +8 ·134 +2 ·135 +O(138)
7+5 ·13+4 ·132 +4 ·133 +134 +4 ·136 +6 ·137 +O(138) ( 3

2 ,
1
2 ,

1
2 ,

1
2 )

7+3 ·13+2 ·132 +11 ·133 +10 ·134 +8 ·135 +6 ·136 +9 ·137 +O(138)
7+12 ·13+132 +133 +10 ·134 +2 ·135 +5 ·136 +12 ·137 +O(138) ( 3

2 ,
3
4 ,0,

1
2 )

7+9 ·13+12 ·132 +5 ·133 +8 ·134 +10 ·135 +10 ·136 +12 ·137 +O(138)



For a complete list of the recovered Z13-points, see [1]. Going through the list of
these Z13-points, we find the following integral points z and record the value of (a,b,c,d)
giving a log(2)+b log(3)+ c log(5)+d log(7) = t ∈ T which recovered it:

disk z t
(0,0) (0,0) (1, 1

2 ,0,
1
2 )

(2,0) (2,0) ( 3
2 ,1,

1
2 ,0)

(6,0) (−7,0) (1,1, 1
2 ,

1
2 )

(10,0) (−3,0) (1, 1
2 ,

1
2 ,0)

(11,0) (−2,0) ( 3
2 ,0,

1
2 ,0)

(9,±1) (−4,∓12) (1, 3
4 ,0,0)

(7,±2) (7,±210) ( 5
4 ,0,

1
2 ,

1
2 )

(−6,∓24) ( 3
2 ,

1
2 ,0,0)

(3,±4) (3,±30) ( 5
4 ,

1
2 ,

1
2 ,0)

(12,±6) (−1,±6) ( 5
4 ,

3
4 ,0,0)
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