Professor Jennifer Balakrishnan, jbala@bu.edu

What is on today

1	Introduction	1
2	The idea of limits: average/instantaneous velocity	2 2
	2.1 Motivating example: average velocity	$\frac{2}{3}$

1 Introduction

- Please refer to the syllabus for all course details.
- How lectures will work:
 - Notes will be available online (http://math.bu.edu/people/jbala/123.html) for use in each class.
 - We will use Learning Catalytics (through MyMathLab).
 - Examples will usually be even-numbered exercises from the textbook.
- Chapter 1 of the textbook gives a review of functions (definitions of various functions: polynomials, rational, exponential, logarithmic, trigonometric; transformations of functions, inverse functions, etc.), all of which will play a crucial role throughout our semester.
 - It is very important to be familiar with the content of this foundational first chapter. Please take a look and do some practice problems this week if any of the concepts are unfamiliar or a bit hazy after the summer.
 - You will have a review worksheet covering some of the topics in Chapter 1 during the first discussion session.
 - Let your TF know if you have not covered a specific topic.
 - We will also review some of the more challenging topics (e.g., inverse trig functions) in lecture when they show up.
- Calculus I: Limits, Differentiation and Integration (Chapters 2 to 5 of the textbook).

2 The idea of limits: average/instantaneous velocity

Briggs-Cochran-Gillett §2.1 pp. 54–60

2.1 Motivating example: average velocity

2016 Summer Olympics 100m men's race: final results

	Distance	Time
Bolt	100m	9.81s
Gatlin	$100 \mathrm{m}$	9.89s

How fast did they go?

Recall: If s(t) is the position at time t, the average velocity between t_0 and t_1 is

$$v_{av} = \frac{s(t_1) - s(t_0)}{t_1 - t_0}.$$

The race: https://www.youtube.com/watch?v=4gUW1JikaxQ&feature=youtu.be&t=190

Graphs of position at various times:

Gatlin clearly started faster (covered more distance in the same amount of time), but then Bolt caught up. Their velocities changed during the race.

2.2 From average to instantaneous velocity, geometric idea

Example 1 (§2.1 Ex. 10) The position of an object moving vertically along a line is given by the function $s(t) = -4.9t^2 + 30t + 20$. Find the average velocity of the object in the intervals [0,3], [0,2], [0,1] and [0,h] where h > 0 is a real number. **Example 2** (§2.1 Ex. 28) Let $f(x) = x^3 - x$. Make a table of slopes of secant lines and make a conjecture about the slope of the tangent line at x = 1. (Recall that a secant line is a straight line joining two points on a curve.)

To summarize:

The instantaneous = "Limit as $t \to t_0$ of the average velocity at $t = t_0$ velocities in the intervals $[t_0, t]$ "

This geometrically corresponds to the following:

The slope of the tangent = "Limit as $t \to t_0$ of the slopes line to s(t) at $(t_0, s(t_0))$ of the secant lines between $(t_0, s(t_0))$ and (t, s(t))"