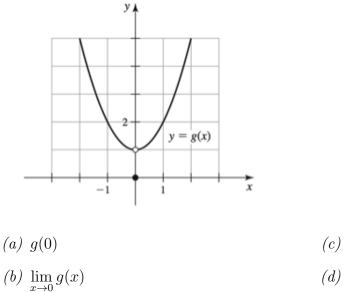
Professor Jennifer Balakrishnan, jbala@bu.edu

What is on today

1	Definition of limits					
	1.1	Finding limits with graphs	1			
	1.2	Finding limits with tables	2			
	1.3	One-sided limits	2			

1 Definition of limits

Briggs-Cochran-Gillett § 2.2, pp. 61–68


Definition 1 (Limit of a function (Preliminary)) Suppose the function f is defined for all x near a except possibly at a. If f(x) is arbitrarily close to L (as close to L as we like) for all x sufficiently close (but not equal) to a, we write

$$\lim_{x \to a} f(x) = L$$

and say the limit of f(x) as x approaches a equals L.

1.1 Finding limits with graphs

Example 2 (§2.2 Ex. 8) Use the graph of g in the figure to find the following values or state that they do not exist.

(c) g(1)(d) $\lim_{x \to 1} g(x)$

1.2 Finding limits with tables

Example 3 (§2.2 Ex. 12) Let $f(x) = \frac{x^3-1}{x-1}$.

(a) Calculate f(x) for each value of x in the following table.

x	0.9	0.99	0.999	0.9999
$f(x) = \frac{x^3 - 1}{x - 1}$				
x	1.1	1.01	1.001	1.0001
$f(x) = \frac{x^3 - 1}{x - 1}$				

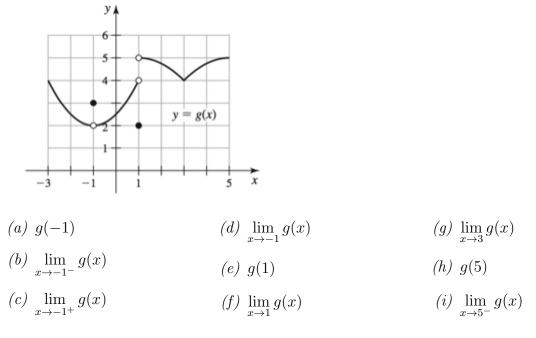
(b) Make a conjecture about the value of $\lim_{x \to 1} \frac{x^3 - 1}{x - 1}$.

1.3 One-sided limits

Definition 4 (One-sided Limits: a right-sided limit or a left-sided limit) Right-sided limit: Suppose f is defined for all x near a with x > a. If f(x) is arbitrarily close to L for all x sufficiently close to a with x > a, we write

$$\lim_{x \to a^+} f(x) = L$$

and say the limit of f(x) as x approaches a from the right equals L. Left-sided limit: Suppose f is defined for all x near a with x < a. If f(x) is arbitrarily close to L for all x sufficiently close to a with x < a, we write


$$\lim_{x \to a^-} f(x) = I$$

and say that the limit of f(x) as x approaches a from the left equals L.

Note (one-sided versus two-sided limits): The limit $\lim_{x\to a} f(x) = L$ is a two-sided limit because f(x) approaches L as x approaches a for values of x less than a and for values of x greater than a.

Theorem 5 (Relationship between one-sided and two-sided limits) Assume f is defined for all x near a except possibly at a. Then $\lim_{x\to a} f(x) = L$ if and only if $\lim_{x\to a^+} f(x) = L$ and $\lim_{x\to a^-} f(x) = L$.

Example 6 (§2.2 Ex. 24) Use the graph of g in the figure to find the following values or state that they do not exist. If a limit does not exist, explain why.

