Professor Jennifer Balakrishnan, jbala@bu.edu

What is on today

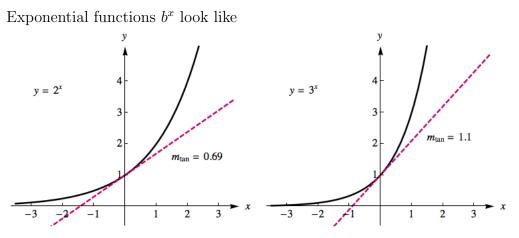
Rul	es of differentiation, continued
1.1	Derivative of e^x
1.2	Higher order derivatives
The	product and quotient rules
2.1	Product rule
2.2	Quotient rule
2.3	Extended power rule
	Exponentials
2.5	Examples
	1.1 1.2 The 2.1 2.2 2.3 2.4

1 Rules of differentiation, continued

Briggs-Cochran-Gillett §3.3 pp. 148-152

1.1 Derivative of e^x

Definition of e



The number e can be defined as the base needed in the exponential function to get the slope of the tangent to the graph at x = 0 equal to 1.

See interactive Figure 3.25 of book!

Definition 1. e^x is the exponential function such that the slope of the tangent to the graph at x = 0 is 1, i.e.,

$$\lim_{h \to 0} \frac{e^n - 1}{h} = 1.$$

Derivative of e^x

Theorem 2. The function $f(x) = e^x$ is differentiable for all real numbers x, and

$$\frac{d}{dx}e^x = e^x.$$

Example 3 (§3.3 Ex. 38). Find an equation of the tangent line to $y = \frac{e^x}{4} - x$ at a = 0. Then use a graphing utility to graph the curve and the tangent line on the same set of axes.

1.2 Higher order derivatives

Definition 4. Assuming the function f(x) can be differentiated as often as necessary, the second derivative of f is

$$f''(x) = \frac{d}{dx}(f'(x)).$$

For integers $n \ge 2$, the **nth derivative** of f is

$$f^{n}(x) = \frac{d}{dx}(f^{(n-1)}(x))$$

Example 5 (§3.3 Ex. 46 and 48). Find f'(x), f''(x), and f'''(x) for the following functions:

- 1. $f(x) = 3x^2 + 5e^x$
- 2. $f(x) = 10e^x$

2 The product and quotient rules

Briggs-Cochran-Gillett §3.4 pp. 153-162

We saw in the last class that the derivative of a sum of functions is the sum of the derivatives. So you might wonder about the derivative of a product of functions: is it the product of the derivatives? Consider $f(x) = x^3$ and $g(x) = x^4$; in this case, $\frac{d}{dx}(f(x)g(x)) = \frac{d}{dx}(x^7) = 7x^6$ but $f'(x)g'(x) = 3x^2 \cdot 4x^3 = 12x^5$. Thus $\frac{d}{dx}(f(x)g(x)) \neq f'(x)g'(x)$ and likewise, the derivative of a quotient is not the quotient of the derivatives.

Today we discuss the rules for differentiating products and quotients of functions and extend a few rules from last class.

2.1 Product rule

Theorem 6 (Product rule). If f and g are differentiable at x, then

$$\frac{d}{dx}(f(x)g(x)) = f'(x)g(x) + f(x)g'(x).$$

2.2 Quotient rule

Theorem 7 (Quotient rule). If f and g are differentiable at x and $g(x) \neq 0$, then the derivative of $\frac{f}{a}$ at x exists and

$$\frac{d}{dx}\left(\frac{f(x)}{g(x)}\right) = \frac{g(x)f'(x) - f(x)g'(x)}{(g(x))^2}.$$

2.3 Extended power rule

Theorem 8. If n is any integer, then $\frac{d}{dx}(x^n) = nx^{n-1}$.

2.4 Exponentials

Theorem 9. For real numbers k, we have $\frac{d}{dx}(e^{kx}) = ke^{kx}$.

2.5 Examples

Now we practice applying these rules.

Example 10 (§3.4 Ex. 8, 12, 24). Compute the derivative of the following functions:

- 1. $g(x) = 6x 2xe^{x}$ 2. $f(x) = (1 + \frac{1}{x^{2}})(x^{2} + 1)$
- 3. $f(x) = e^{-x}\sqrt{x}$

Example 11 (§3.4 Ex. 32). Let $y = \frac{x^2 - 2ax + a^2}{x - a}$, where a is a constant.

- 1. Use the quotient rule to find the derivative of the given function. Simplify your result.
- 2. Find the derivative by first simplifying the function. Verify that your answer agrees with part (1).

Example 12 (§3.4 Ex. 40, 48). *Find the derivative of the following functions:*

1. $y = \frac{w^4 + 5w^2 + w}{w^2}$.

2. $f(x) = (1 - 2x)e^{-x}$

Example 13 (§3.4 Ex. 54). A \$200 investment in a savings account grows according to $A(t) = 200e^{0.0398t}$ for $t \ge 0$, where t is measured in years.

- 1. Find the balance of the account after 10 years.
- 2. How fast is the account growing (in dollars/year) at t = 10?
- 3. Use your answers to parts (1) and (2) to write the equation of the line tangent to the curve $A = 200e^{0.0398t}$ at the point (10, A(10)).

Example 14 (§3.4 Ex. 60). Compute the derivative of $h(x) = \frac{x+1}{x^2 e^x}$.

Example 15 (§3.4 Ex. 72). Suppose f(2) = 2 and f'(2) = 3. Let $g(x) = x^2 f(x)$ and $h(x) = \frac{f(x)}{x-3}$.

- 1. Find an equation of the line tangent to y = g(x) at x = 2.
- 2. Find an equation of the line tangent to y = h(x) at x = 2.