1

Professor Jennifer Balakrishnan, jbala@bu.edu

What is on today

1 Chain Rule

1 Chain Rule

Briggs-Cochran-Gillett §3.7 pp. 185–194

The Chain Rule lets us differentiate composite functions:

Theorem 1 (Chain Rule). Suppose y = f(u) is differentiable at u = g(x) and u = g(x) is differentiable at x. The composite function y = f(g(x)) is differentiable at x, and its derivative can be expressed in two equivalent ways: Version 1:

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$$

Version 2:

$$\frac{d}{dx}(f(g(x))) = f'(g(x)) \cdot g'(x)$$

Example 2 (§3.7 Ex. 8). Use the Chain Rule to compute the derivative of $y = (5x^2 + 11x)^{20}$.

Example 3 (§3.7 based on Ex. 10). Use the Chain Rule to compute the derivatives of the following functions:

- 1. $y = \cos x^5$
- 2. $y = \cos^5 x$

Example 4 (§3.7 Ex. 13, 28). Calculate the derivatives of the following functions:

1. $y = \sqrt{x^2 + 1}$ 2. $y = e^{\tan t}$ **Example 5** (§3.7 Ex. 38). Let h(x) = f(g(x)) and k(x) = g(g(x)). Use the table to compute the following derivatives.

1.	h'(1)			3	h'(3)	
2. $h'(2)$		4. $k'(3)$				
	x	1	2	3	4	5
	f' (x)	-6	-3	8	7	2
	g(x)	4	1	5	2	3
	g'(x)	9	7	3	-1	-5

Example 6 (§3.7 Ex. 48, 52, 54, 64, 68). Calculate the derivatives of the following functions:

1. $y = \sin^2(e^{3x+1})$ 2. $y = (1 - e^{-0.05x})^{-1}$ 3. $y = \sqrt{x + \sqrt{x + \sqrt{x}}}$ 4. $y = e^{2x}(2x - 7)^5$ 5. $y = (z + 4)^3 \tan z$

Example 7 (§3.7 Ex. 82). Suppose f is differentiable on [-2, 2] with f'(0) = 3 and f'(1) = 5. Let $g(x) = f(\sin x)$. Evaluate the following expressions:

- 1. g'(0)
- 2. $g'\left(\frac{\pi}{2}\right)$
- 3. $g'(\pi)$