MA 123 (Calculus I)

Professor Jennifer Balakrishnan, jbala@bu.edu

What is on today

2	Review of Inverse Trigonometric Functions	
	2.1	Sine and Arcsine
	2.2	Cosine and Arccosine
	2.3	Other inverse trig functions
	2.4	Examples

1 Derivatives of logarithmic and exponential functions

Briggs-Cochran-Gillett §3.9 pp. 203 - 213

Example 1 (§3.9 Ex. 52). Determine whether the graph of $y = x^{\sqrt{x}}$ has any horizontal tangent lines.

Example 2 (§3.9 Ex. 72). Compute the following higher order derivatives: $\frac{d^n}{dx^n}(2^x)$.

Example 3 (§3.9 Ex. 78). Let $f(x) = \ln \frac{2x}{(x^2+1)^3}$. Use the properties of logarithms to simplify the function before computing f'(x).

Example 4 (§3.9 Ex. 88). Compute the derivative $\frac{d}{dx}(x^{\pi} + \pi^{x})$.

2 Review of Inverse Trigonometric Functions

Briggs-Cochran-Gillett §1.4 pp. 38-51

2.1 Sine and Arcsine

To invert a function f on a domain we need it to be one-to-one on that domain. This means that every output of the function f must correspond to exactly one input. (Recall that the one-to-one property is checked graphically by using the *horizontal line test*.) The function sin x is not one-to-one over all its domain, but if we restrict it to $[-\pi/2, \pi/2]$ it is one-to-one, and it makes sense to talk about its inverse.

The inverse of $\sin x$ is $\arcsin x = \sin^{-1} x$.

- $\sin^{-1}(x)$ is the angle whose sin is x
- Domain $(\sin^{-1} x) = [-1, 1]$ (range of $\sin x$)
- Range $(\sin^{-1} x) = [-\pi/2, \pi/2]$ (restricted domain of $\sin x$)
- Graphically the two functions are symmetric about the line y = x
- $\sin(\sin^{-1}(x)) = x$ for all x in [-1, 1]
- $\sin^{-1}(\sin(x)) = x$ for all x in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
- Remark: $\sin^{-1} x$ is not $\frac{1}{\sin x}$

2.2 Cosine and Arccosine

In the same way as above, the function $\cos x$ is not one-to-one over all its domain, but if we restrict it to $[0, \pi]$ it is one-to-one, and it makes sense to talk about its inverse.

The inverse of $\cos x$ is $\arccos x = \cos^{-1} x$.

- $\cos^{-1}(x)$ is the angle whose $\cos is x$
- Domain $(\cos^{-1} x) = [-1, 1]$ (range of $\cos x$)
- Range $(\cos^{-1} x) = [0, \pi]$ (restricted domain of $\cos x$)
- Graphically the two functions are symmetric about the line y = x
- $\cos(\cos^{-1}(x)) = x$ for all x in [-1, 1]
- $\cos^{-1}(\cos(x)) = x$ for all x in $[0, \pi]$
- Remark: $\cos^{-1} x$ is not $\frac{1}{\cos x}$

2.3 Other inverse trig functions

We proceed in the same way to find the inverse functions to all trigonometric functions.

DEFINITION Other Inverse Trigonometric Functions $y = \tan^{-1} x$ is the value of y such that $x = \tan y$, where $-\frac{\pi}{2} < y < \frac{\pi}{2}$. $y = \cot^{-1} x$ is the value of y such that $x = \cot y$, where $0 < y < \pi$. The domain of both $\tan^{-1} x$ and $\cot^{-1} x$ is $\{x : -\infty < x < \infty\}$. $y = \sec^{-1} x$ is the value of y such that $x = \sec y$, where $0 \le y \le \pi$, with $y \ne \frac{\pi}{2}$. $y = \csc^{-1} x$ is the value of y such that $x = \csc y$, where $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$, with $y \ne 0$. The domain of both $\sec^{-1} x$ and $\csc^{-1} x$ is $\{x : |x| \ge 1\}$.

2.4 Examples

Example 5 (§1.4 Ex. 47, 52, 53, 67, 68, 69). Evaluate the following expressions (without calculator!) or state that they are not defined.

(i) $\sin^{-1}(1)$ (iii) $\cos^{-1}(-1/2)$ (v) $\cot^{-1}(-1/\sqrt{3})$ (ii) $\cos^{-1}(2)$ (iv) $\tan^{-1}(\sqrt{3})$ (vi) $\sec^{-1}(2)$

Example 6 (§1.4 Ex. 57, 59, 75). Simplify the given expressions. Assume x > 0.

(i) $\cos(\sin^{-1}x)$ (ii) $\sin(\cos^{-1}(x/2))$ (iii) $\cos(\tan^{-1}x)$

3 Derivatives of Inverse Trigonometric Functions

Briggs-Cochran-Gillett §3.10 pp. 214 - 223

Using implicit differentiation and trigonometric identities we get:

Derivatives of Inverse Trigonometric Functions $\frac{d}{dx} (\sin^{-1} x) = \frac{1}{\sqrt{1 - x^2}} \qquad \frac{d}{dx} (\cos^{-1} x) = -\frac{1}{\sqrt{1 - x^2}}, \text{ for } -1 < x < 1$ $\frac{d}{dx} (\tan^{-1} x) = \frac{1}{1 + x^2} \qquad \frac{d}{dx} (\cot^{-1} x) = -\frac{1}{1 + x^2}, \text{ for } -\infty < x < \infty$ $\frac{d}{dx} (\sec^{-1} x) = \frac{1}{|x|\sqrt{x^2 - 1}} \qquad \frac{d}{dx} (\csc^{-1} x) = -\frac{1}{|x|\sqrt{x^2 - 1}}, \text{ for } |x| > 1$ **Example 7** (§3.10 Ex. 8, 16, 18, 20, 29). Evaluate the derivatives of the following functions.

- 1. $f(x) = x \sin^{-1} x$
- 2. $g(z) = \tan^{-1}(1/z)$
- 3. $f(x) = \sec^{-1} \sqrt{x}$
- 4. $f(t) = (\cos^{-1} t)^2$
- 5. $f(s) = \cot^{-1}(e^s)$