Professor Jennifer Balakrishnan, jbala@bu.edu

What is on today

1	Derivatives of Inverse Trig Functions Wrap-up	1
	1.1 Application	2
2	Related rates	2

1 Derivatives of Inverse Trig Functions Wrap-up

Briggs-Cochran-Gillett §3.10 pp. 214 – 223

We saw during the last lecture:

Derivatives of Inverse Trigonometric Functions

$$\frac{d}{dx}(\sin^{-1}x) = \frac{1}{\sqrt{1-x^2}} \qquad \frac{d}{dx}(\cos^{-1}x) = -\frac{1}{\sqrt{1-x^2}}, \text{ for } -1 < x < 1$$

$$\frac{d}{dx}(\tan^{-1}x) = \frac{1}{1+x^2} \qquad \frac{d}{dx}(\cot^{-1}x) = -\frac{1}{1+x^2}, \text{ for } -\infty < x < \infty$$

$$\frac{d}{dx}(\sec^{-1}x) = \frac{1}{|x|\sqrt{x^2-1}} \qquad \frac{d}{dx}(\csc^{-1}x) = -\frac{1}{|x|\sqrt{x^2-1}}, \text{ for } |x| > 1$$

Example 1 (§3.10 Ex. 24, 28). Evaluate the derivatives of the following functions.

1. $f(w) = \sin(\sec^{-1}(2w))$

2.
$$f(x) = \sin(\tan^{-1}(\ln x))$$

Example 2 (§3.10 Ex. 34). Find an equation of the line tangent to the graph of $f(x) = \sec^{-1}(e^x)$ at the point $(\ln 2, \frac{\pi}{3})$.

1.1 Application

Example 3 (§3.10 Ex. 36). A small plane, moving at 70 m/s, flies horizontally on a line 400 m directly above an observer. Let θ be the angle of elevation of the plane (see figure).

- a. What is the rate of change of the angle of elevation $\frac{d\theta}{dx}$ when the plane is x = 500 m past the observer?
- b. Graph $\frac{d\theta}{dx}$ as a function of x and determine the point at which θ changes most rapidly.

2 Related rates

Briggs-Cochran-Gillett §3.11 pp. 224-231

We revisit the idea of the derivative as the rate of change of a function, in the context of problems that have related variables changing with respect to time.

Example 4 (§3.11 Ex. 6). The sides of a square decrease in length at a rate of 1 m/s.

- 1. At what rate is the area of the square changing when the sides are 5 m long?
- 2. At what rate are the lengths of the diagonals of the square changing?

Example 5 (§3.11 Ex. 20). A jet ascends at a 10° angle from the horizontal with an airspeed of 550 mi/hr (its speed along its line of flight is 550 mi/hr). How fast is the altitude of the jet increasing? If the sun is directly overhead, how fast is the shadow of the jet moving on the ground?

Example 6 (§3.11 Ex. 24). A 12-foot ladder is leaving against a vertical wall when Jack begins pulling the foot of the ladder away from the wall at a rate of 0.2 ft/s. What is the configuration of the ladder at the instant that the vertical speed of the top of the ladder equals the horizontal speed of the foot of the ladder?

Example 7 (§3.11 Ex. 26). Runners stand at first and second base in a baseball game. At the moment a ball is hit, the runner at first base runs to second base at 18 ft/s; simultaneously the runner on second runs to third base at 20 ft/s. How fast is the distance between the runners changing 1 second after the ball is hit (see figure)? (Hint: the distance between consecutive bases is 90 ft and the bases lie at the corners of a square.)

