Professor Jennifer Balakrishnan, jbala@bu.edu

What is on today

L	L'H	ôpital's Rule	1
	1.1	L'Hôpital's Rule for $0/0$	1
	1.2	L'Hôpital's Rule for ∞/∞	2
	1.3	How to handle related indeterminate forms: $0 \cdot \infty$ and $\infty - \infty$	3
	1.4	Indeterminate forms 1^{∞} , 0^{0} and ∞^{0}	3

1 L'Hôpital's Rule

Briggs-Cochran-Gillett §4.7 pp. 297 - 302

In this section, we present a new technique, *l'Hôpital's Rule*, to evaluate certain limits called *indeterminate forms*.

What is an indeterminate form? As an example, consider $\lim_{x\to 0} \frac{\sin x}{x}$. If we attempt to substitute x = 0 into $\frac{\sin x}{x}$, we get $\frac{0}{0}$. Yet we earlier showed that $\frac{\sin x}{x}$ has limit 1 at x = 0. This limit is an example of an indeterminate form; in particular, $\lim_{x\to 0} \frac{\sin x}{x}$ has the indeterminate form 0/0 because the numerator and denominator both approach 0 as $x \to 0$.

1.1 L'Hôpital's Rule for 0/0

Theorem 1 (L'Hôpital's Rule). Suppose f and g are differentiable on an open interval I containing a with $g'(x) \neq 0$ on I when $x \neq a$. If $\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0$, then

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)},$$

provided the limit on the right side exists (or is $\pm \infty$). The rule also applies if $x \to a$ is replaced by $x \to \pm \infty$, $x \to a^+$, or $x \to a^-$.

Example 2 (§4.7 Ex. 14,16,30,34). Evaluate the following limits using l'Hôpital's Rule:

1.
$$\lim_{x \to -1} \frac{x^4 + x^3 + 2x + 2}{x + 1}$$

2.
$$\lim_{x \to 0} \frac{e^x - 1}{x^2 + 3x}$$

3.
$$\lim_{x \to \infty} \frac{\tan^{-1} x - \pi/2}{1/x}$$

4.
$$\lim_{y \to 2} \frac{y^2 + y - 6}{\sqrt{8 - y^2} - y}$$

1.2 L'Hôpital's Rule for ∞/∞

L'Hôpital's Rule also applies directly to limits of the form $\lim_{x \to a} \frac{f(x)}{g(x)}$, where $\lim_{x \to a} f(x) = \pm \infty$ and $\lim_{x \to a} g(x) = \pm \infty$. This indeterminate form is denoted ∞ / ∞ .

Theorem 3 (L'Hôpital's Rule for ∞/∞). Suppose that f and g are differentiable on an open interval I containing a, with $g'(x) \neq 0$ on I when $x \neq a$. If $\lim_{x \to a} f(x) = \pm \infty$ and $\lim_{x \to a} g(x) = \pm \infty$, then

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)},$$

provided the limit on the right side exists (or is $\pm \infty$). The rule also applies for $x \to \pm \infty, x \to a^+$, or $x \to a^-$.

Example 4 (§4.7 Ex. 38,42,44). Evaluate the following limits:

1.
$$\lim_{x \to \infty} \frac{4x^3 - 2x^2 + 6}{\pi x^3 + 4}$$

2.
$$\lim_{x \to \infty} \frac{\ln(3x + 5e^x)}{\ln(7x + 3e^{2x})}$$

3.
$$\lim_{x \to \pi/2} \frac{2\tan x}{\sec^2 x}$$

1.3 How to handle related indeterminate forms: $0 \cdot \infty$ and $\infty - \infty$ Here we consider two other indeterminate forms. Limits of the form $\lim_{x \to a} f(x)g(x)$, where

 $\lim_{x\to a} f(x) = 0$ and $\lim_{x\to a} g(x) = \pm \infty$ are denoted $0 \cdot \infty$, while limits of the form $\lim_{x\to a} (f(x) - g(x))$, where $\lim_{x\to a} f(x) = \infty$ and $\lim_{x\to a} g(x) = \infty$ are indeterminate forms we denote $\infty - \infty$. L'Hôpital's Rule cannot directly be applied to either of these limits! However, if we can recast these indeterminate forms into the form 0/0 or ∞/∞ , then we may apply L'Hôpital's Rule.

Occasionally, it helps to convert a limit as $x \to \infty$ to a limit as $t \to 0^+$ (or vice versa) by a change of variables. To evaluate $\lim_{x\to\infty} f(x)$, we define $t = \frac{1}{x}$ and note that as $x \to \infty$, we have $t \to 0^+$. Then $\lim_{x\to\infty} f(x) = \lim_{t\to 0^+} f\left(\frac{1}{t}\right)$.

Example 5 (§4.7 Ex. 46, 49, 51, 52). Evaluate the following limits:

1.
$$\lim_{x \to 1^{-}} (1-x) \tan \frac{\pi x}{2}$$

2.
$$\lim_{x \to \pi/2^{-}} \left(\frac{\pi}{2} - x\right) \sec x$$

3.
$$\lim_{x \to 0^{+}} \left(\cot x - \frac{1}{x}\right)$$

4.
$$\lim_{x \to \infty} \left(x - \sqrt{x^{2} + 1}\right)$$

1.4 Indeterminate forms 1^{∞} , 0^{0} and ∞^{0}

The indeterminate forms 1^{∞} , 0^{0} , ∞^{0} arise from limits of the form

x

$$\lim_{x \to a, \pm \infty, a^+, a^-} f(x)^{g(x)}.$$

L'Hôpital's rule cannot be applied directly, but we can rewrite the expression inside the limit as an exponential:

$$f(x)^{g(x)} = e^{g(x)\ln(f(x))}.$$

Using this and the fact that the exponential function is continuous we know that

$$\lim_{x \to a} f(x)^{g(x)} = \lim_{x \to a} e^{g(x) \ln(f(x))} = e^{\lim_{x \to a} g(x) \ln(f(x))}$$

So we just need to worry about the limit $\lim_{x\to a} g(x) \ln(f(x))$. Let us illustrate this in some examples.

Example 6 (§4.7 Ex. 56, 62, 65, 66). Evaluate the following limits or explain why they do not exist:

- 1. $\lim_{x \to 0} (1+4x)^{3/x}$
- 2. $\lim_{x \to 0} (e^{5x} + x)^{1/x}$
- 3. $\lim_{x \to 0^+} (\tan x)^x$

$$4. \lim_{z \to \infty} \left(1 + \frac{10}{z^2} \right)^{z^2}$$

So all indeterminate forms are (l'Hôpital's rule just applies directly to the 2 first forms):

$$\frac{0}{0}, \ \frac{\infty}{\infty}, \ 0 \cdot \infty, \ \infty - \infty, \ 1^{\infty}, \ 0^0, \ \infty^0.$$

Limits that are **NOT** indeterminate forms:

- $1/\infty$
- 1/0
- $0/\infty$
- $\infty/0$
- 0[∞]