Professor Jennifer Balakrishnan, jbala@bu.edu

What is on today

1	Defi	nite integrals	1
	1.1	From Riemann sums to definite integrals	1
	1.2	Definition of definite integral	1
	1.3	Evaluating definite integrals	2
	1.4	Properties of definite integrals	4

1 Definite integrals

Briggs-Cochran-Gillett §5.2 pp. 352-361

1.1 From Riemann sums to definite integrals

Example 1 (§5.2 Ex. 15, 16). *The following functions are positive and negative on the given interval.*

- (a) Sketch the function on the given interval.
- (b) Approximate the net area bounded by the graph of f and the x-axis on the interval using a left, right, and midpoint Riemann sum with n = 4.
- 1. f(x) = 4 2x on [0, 4]
- 2. $f(x) = 8 2x^2$ on [0, 4]

1.2 Definition of definite integral

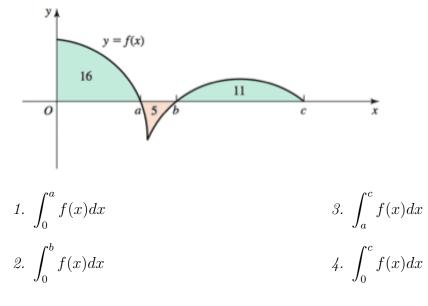
Riemann sums for f on [a, b] approximate the net area of the region bounded by the graph of f and the x-axis between x = a and x = b. How do we make these approximations exact? If f is continuous on [a, b], it is reasonable to expect the Riemann sum approximations to approach the exact value of the net area as the number of subintervals $n \to \infty$ and as the length of the subintervals $\Delta x \to 0$, giving net area $= \lim_{n \to \infty} \sum_{k=1}^{n} f(x_k^*) \Delta x$. This brings us to the notion of the definite integral: **Definition 2** (Definite integral). A function f defined on [a, b] is integrable on [a, b] if the limit $\lim_{\Delta x \to 0} \sum_{k=1}^{n} f(x_k^*) \Delta x_k$ exists. This limit is the **definite integral of** f from a to b, which we write

$$\int_{a}^{b} f(x)dx = \lim_{\Delta x \to 0} \sum_{k=1}^{n} f(x_{k}^{*})\Delta x_{k}.$$

Example 3 (§5.2 Ex. 22). Consider the limit $\lim_{\Delta x \to 0} \sum_{k=1}^{n} (4 - x_k^{*2}) \Delta x_k$ on [-2, 2] of Riemann sums for a function f on [a, b]. Identify f and express the limit as a definite integral.

1.3 Evaluating definite integrals

Example 4 (§5.2 Ex. 33, 34, 35, 36). The figure shows the areas of regions bounded by the graph of f and the x-axis. Evaluate the following integrals.



We can use familiar area formulas from geometry to evaluate certain definite integrals.

Example 5 (§5.2 Ex. 30). Use geometry (not Riemann sums) to evaluate the definite integral 2

$$\int_{-1}^{3} \sqrt{4 - (x - 1)^2} dx.$$

Sketch a graph of the integrand, show the region in question, and interpret your result.

We can also write down Riemann sums, take the limit as $n \to \infty$, and use the formulas for sums of powers of integers to compute certain definite integrals.

Example 6 (§5.2 Ex. 48, 50). Use the definition of the definite integral to evaluate the following definite integrals. Use right Riemann sums and results on sums of powers of integers.

1.
$$\int_{1}^{5} (1-x) dx$$

2.
$$\int_0^2 (x^2 - 1) dx$$

1.4 Properties of definite integrals

We first establish some criteria for a function to be integrable:

Theorem 7 (Integrable functions). If f is continuous on [a, b] or bounded on [a, b] with a finite number of discontinuities, then f is integrable on [a, b].

Here are some very important properties of definite integrals:

Let f and g be integrable functions on an interval that contains a, b,
and p.
1.
$$\int_{a}^{a} f(x) dx = 0$$
 Definition
2. $\int_{b}^{a} f(x) dx = -\int_{a}^{b} f(x) dx$ Definition
3. $\int_{a}^{b} (f(x) + g(x)) dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx$
4. $\int_{a}^{b} c f(x) dx = c \int_{a}^{b} f(x) dx$ For any constant c
5. $\int_{a}^{b} f(x) dx = \int_{a}^{p} f(x) dx + \int_{p}^{b} f(x) dx$
6. The function $|f|$ is integrable on $[a, b]$ and $\int_{a}^{b} |f(x)| dx$ is the sum of the
areas of the regions bounded by the graph of f and the x-axis on $[a, b]$.

Example 8 (§5.2 Ex. 42). Suppose $\int_{1}^{4} f(x)dx = 8$ and $\int_{1}^{6} f(x)dx = 5$. Evaluate the following integrals.

1.
$$\int_{1}^{4} (-3f(x))dx$$

2. $\int_{1}^{4} 3f(x)dx$
3. $\int_{6}^{4} 12f(x)dx$
4. $\int_{4}^{6} 3f(x)dx$

Example 9 (§5.2 Ex. 44). Suppose $f(x) \ge 0$ on [0,2], $f(x) \le 0$ on [2,5], $\int_0^2 f(x)dx = 6$, and $\int_2^5 f(x)dx = -8$. Evaluate the following integrals.

1.
$$\int_{0}^{5} f(x)dx$$

2. $\int_{0}^{5} |f(x)|dx$
3. $\int_{2}^{5} 4|f(x)|dx$
4. $\int_{0}^{5} (f(x) + |f(x)|)dx$