Professor Jennifer Balakrishnan, jbala@bu.edu

What is on today

1	Working with integrals		1
	1.1 Eve	en and odd functions	1
	1.2 Ave	erage value of a function	3
	1.3 Me	an Value Theorem for integrals	4
2		ea functions and the Fundamental Theorem of Calculus	4 4

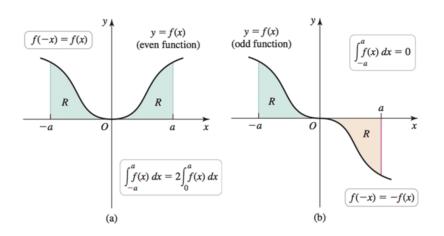
1 Working with integrals

Briggs-Cochran-Gillett §5.4 (without Fundamental Theorem of Calculus) pp. 377-384

1.1 Even and odd functions

Definition 1 (Even and odd functions).

- 1. An even function f is a function that satisfies f(-x) = f(x). This means its graph is symmetric about the y-axis. Ex: $\cos(x)$, x^2 , x^4 .
- 2. An odd function f is a function that satisfies f(-x) = -f(x). This means its graph is symmetric about the origin. Ex: $\sin(x)$, x, x^3 .



Theorem 2. Let a be a positive number and let f be an integrable function on the interval [-a, a]. Then

1. if f is even,
$$\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx$$
;

2. if f is odd,
$$\int_{-a}^{a} f(x) dx = 0$$
.

Example 3 (§5.4 Ex. 16). Use symmetry to evaluate the following integral

$$\int_{-1}^{1} (1 - |x|) dx.$$

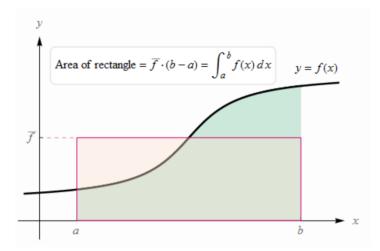
Example 4 (§5.4 Ex. 52). Suppose f is an odd function, $\int_0^4 f(x)dx = 3$, and $\int_0^8 f(x)dx = 9$. Evaluate

- 1. $\int_{-4}^{8} f(x) dx$
- 2. $\int_{-8}^{4} f(x) dx$

1.2 Average value of a function

Definition 5 (Average value of a function). The average value of an integrable function on the interval [a, b] is

$$\bar{f} = \frac{1}{b-a} \int_{a}^{b} f(x) dx$$

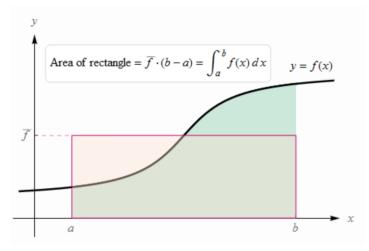


Example 6 (§5.4 Ex. 27). Find the average value of $f(x) = \cos x$ on $[-\pi/2, \pi/2]$ knowing that $\int_0^{\pi/2} \cos x \, dx = 1$. Draw a graph of the function and indicate the average value.

1.3 Mean Value Theorem for integrals

Theorem 7. Let f be continuous on the interval [a, b]. There exists a point c in (a, b) such that

$$f(c) = \bar{f} = \frac{1}{b-a} \int_{a}^{b} f(x) dx$$



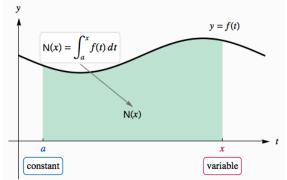
Example 8 (§5.4 Ex. 39). Find or approximate all points at which the function f(x) = 1 - |x| equals its average value on the interval [-1, 1].

2 Net area functions and the Fundamental Theorem of Calculus

Briggs-Cochran-Gillett §5.3 pp. 362-376

2.1 Net area functions

The concept of net area is essential in understanding the relationship between derivatives and integrals. If instead of finding the net area of a continuous function over a fixed interval [a, b], we allow the right boundary point to move and calculate the net area over the intervals [a, x], the net area for the different values of f define a function:



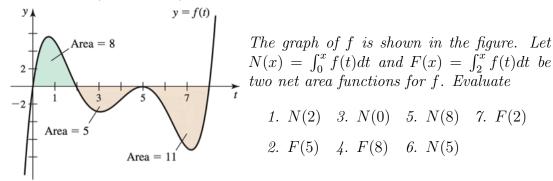
Definition 9. Let f be a continuous function, for $t \ge a$. The net area function for f with left endpoint a is

$$N(x) = \int_{a}^{x} f(t)dt,$$

where $x \geq a$.

Remark 10. In the textbook, "net area" functions are called "area functions." We call them **net area** functions to make it clear that they calculate a net area and not an area!

Example 11 (§5.3 Ex. 12).



Next time, we will discuss the Fundamental Theorem of Calculus and how it relates to net area functions.