1

Professor Jennifer Balakrishnan, jbala@bu.edu

What is on today

1 The matrix of a linear transformation

1 The matrix of a linear transformation

Lay–Lay–McDonald §1.9 pp. 71 – 78

Whenever a linear transformation T arises geometrically, it's an interesting problem to compute the corresponding matrix transformation $\mathbf{x} \mapsto A\mathbf{x}$. (Every linear transformation from \mathbb{R}^n to \mathbb{R}^m is actually a matrix transformation $\mathbf{x} \mapsto A\mathbf{x}$.) The key to finding A is to observe that T is completely determined by what it does to the columns of the $n \times n$ identity matrix I_n .

Example 1 The columns of
$$I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 are $\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$. Suppose T is a linear transformation from \mathbb{R}^2 to \mathbb{R}^3 such that $T(\mathbf{e}_1) = \begin{bmatrix} 5 \\ -7 \\ 2 \end{bmatrix}$ and $T(\mathbf{e}_2) = \begin{bmatrix} -3 \\ 8 \\ 0 \end{bmatrix}$. Find a formula for the image of an arbitrary \mathbf{x} in \mathbb{R}^2 .

Theorem 2 Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Then there exists a unique matrix A such that

$$T(\mathbf{x}) = A\mathbf{x} \quad for \ all \ \mathbf{x} \in \mathbb{R}^n.$$

In fact, A is the $m \times n$ matrix whose jth column is the vector $T(\mathbf{e}_j)$, where \mathbf{e}_j is the jth column of the identity matrix in \mathbb{R}^n :

$$A = [T(\mathbf{e}_1) \quad \cdots \quad T(\mathbf{e}_n)]. \tag{1}$$

The matrix A in (1) is called the standard matrix for the linear transformation T.

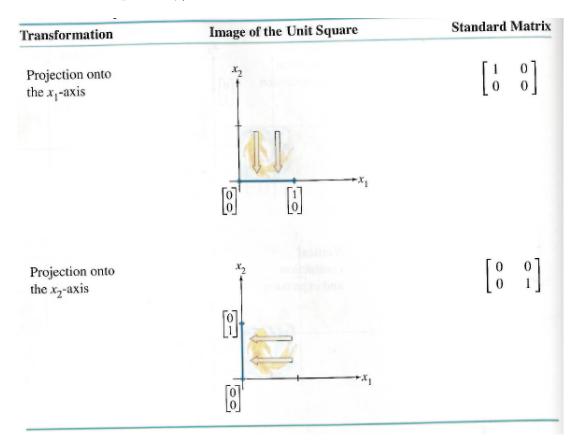
Every linear transformation from \mathbb{R}^n to \mathbb{R}^m can be viewed as a matrix transformation, and vice versa!

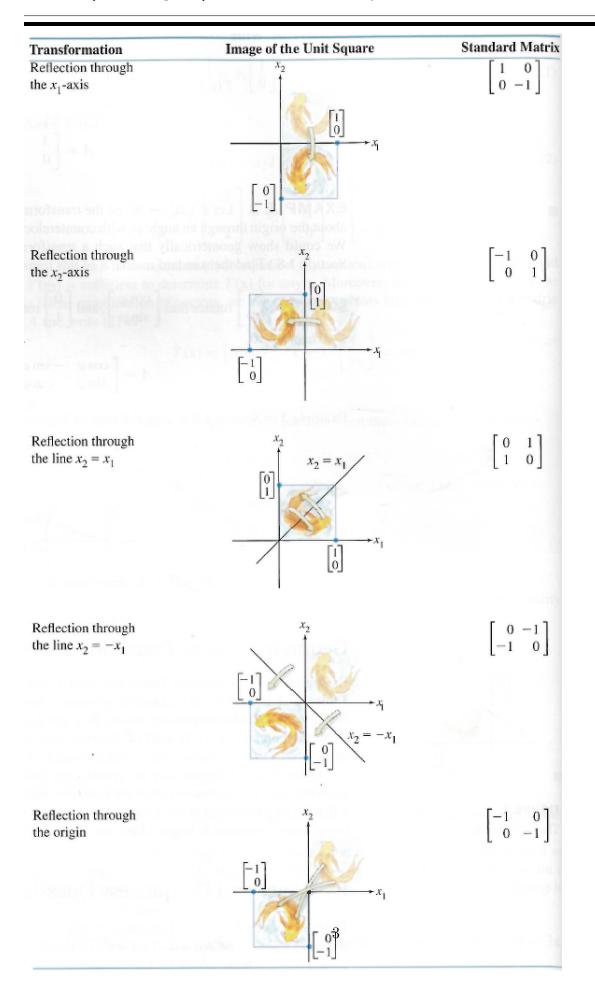
We practice with finding the standard matrix for linear transformations in the next two examples:

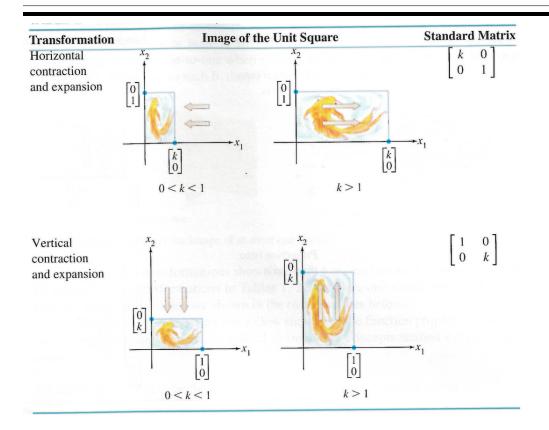
Example 3 Find the standard matrix A for the dilation $T(\mathbf{x}) = 4\mathbf{x}$ for \mathbf{x} in \mathbb{R}^2 .

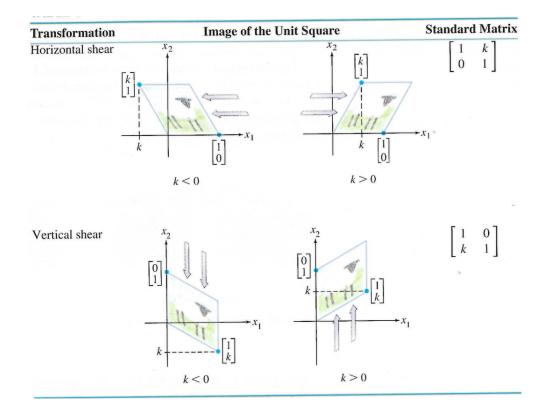
Example 4 Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be the transformation that rotates each point in \mathbb{R}^2 about the origin through an angle φ , with counterclockwise rotation for a positive angle. Such a transformation is linear. Find the standard matrix A of this transformation.

Below we reproduce some helpful figures from the textbook (§1.8, Tables 1–4) illustrating various geometric linear transformations (projections, reflections, contractions and cxpansions, and shears, respectively) of \mathbb{R}^2 .









Now we translate our earlier existence and uniqueness questions about solutions of linear systems into questions about linear transformations, via the following terminology.

Definition 5 A mapping $T : \mathbb{R}^n \to \mathbb{R}^m$ is said to be onto \mathbb{R}^m if each $\mathbf{b} \in \mathbb{R}^m$ is the image of at least one $\mathbf{x} \in \mathbb{R}^n$.

Equivalently, T is onto \mathbb{R}^m when the range of T is all of the codomain \mathbb{R}^m . So the question "Does T map \mathbb{R}^n onto \mathbb{R}^m ?" is an existence question. The mapping T is not onto when there is some $\mathbf{b} \in \mathbb{R}^m$ for which the equation $T(\mathbf{x}) = \mathbf{b}$ has no solution.

Definition 6 A mapping $T : \mathbb{R}^n \to \mathbb{R}^m$ is said to be one-to-one if each $\mathbf{b} \in \mathbb{R}^m$ is the image of at most one $\mathbf{x} \in \mathbb{R}^n$.

Equivalently, T is one-to-one if, for each $\mathbf{b} \in \mathbb{R}^m$, the equation $T(\mathbf{x}) = \mathbf{b}$ has either a unique solution or none at all. "Is T one-to-one?" is a uniqueness question.

Example 7 Let T be the linear transformation whose standard matrix is $A = \begin{bmatrix} 1 & -4 & 8 & 1 \\ 0 & 2 & -1 & 3 \\ 0 & 0 & 0 & 5 \end{bmatrix}$. Does T map \mathbb{R}^4 onto \mathbb{R}^3 ? Is T a one-to-one mapping?

Theorem 8 Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Then T is one-to-one if and only if the equation $T(\mathbf{x}) = \mathbf{0}$ has only the trivial solution.

Theorem 9 Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation, and let A be the standard matrix for T. Then

- 1. T maps \mathbb{R}^n onto \mathbb{R}^m if and only if the columns of A span \mathbb{R}^m .
- 2. T is one-to-one if and only if the columns of A are linearly independent.

Example 10 Let $T(x_1, x_2) = (3x_1 + x_2, 5x_1 + 7x_2, x_1 + 3x_2)$. Show that T is a one-to-one linear transformation. Does T map \mathbb{R}^2 onto \mathbb{R}^3 ?