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What is on today

1 Matrix operations 1

2 The inverse of a matrix 1

1 Matrix operations

Lay–Lay–McDonald §2.1 pp. 101 – 102

We finish this section by recapping some properties of matrix transposes:

Theorem 1. Let A and B denote matrices whose sizes are appropriate for the following
sums and products.

1. (AT )T = A

2. (A + B)T = AT + BT

3. For any scalar r, (rA)T = rAT

4. (AB)T = BTAT

2 The inverse of a matrix

Lay–Lay–McDonald §2.2 pp. 104 – 111

Today we discuss what it means to invert a matrix A; that is, to compute a matrix A−1 such
that

A−1A = AA−1 = I.

An n×n matrix A is said to be invertible if there is an n×n matrix C such that CA = I
and AC = I, where I = In, the n×n identity matrix. In this case, C is an inverse of A. The
inverse of a matrix A is unique, and we denote it as A−1. A matrix that is not invertible is
sometimes called a singular matrix, and an invertible matrix is called a nonsingular matrix.

Example 2. Let A =

[
2 5
−3 −7

]
, C =

[
−7 −5
3 2

]
. Compute AC and CA.
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Below is a formula for the inverse of a 2 × 2 matrix, along with a test for when a 2 × 2
matrix is invertible:

Theorem 3. Let A =

[
a b
c d

]
. If ad− bc 6= 0, then A is invertible, and

A−1 =
1

ad− bc

[
d −b
−c a

]
.

If ad− bc = 0, then A is not invertible.

The quantity above of ad − bc is called the determinant of A (in the case of a 2 × 2
matrix), and we write detA = ad− bc.

Invertible matrices are very useful for solving matrix equations. In fact, we have the
following theorem:

Theorem 4. If A is an invertible n× n matrix, then for each b ∈ Rn, the equation Ax = b
has the unique solution x = A−1b.

Proof. Let b ∈ Rn. Since A is invertible, we may compute x = A−1b, and we see that

Ax = AA−1b = Ib = b,

so x is certainly a solution to the equation. To check uniqueness, suppose that we have
another solution u of the equation; that is Au = b. Then multiplying both sides of the
equation by A−1 yields

A−1Au = A−1b ⇒ Iu = A−1b ⇒ u = A−1b,

and we see that u = x.

Example 5. Use an inverse matrix to solve the system

3x1 + 4x2 = 3

5x1 + 6x2 = 7.

Here are some useful results about invertible matrices:

1. If A is an invertible matrix, then A−1 is invertible, and

(A−1)−1 = A.
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2. If A and B are n× n invertible matrices, then so is AB, and the inverse of AB is the
product of the inverses of A and B in the reverse order. That is,

(AB)−1 = B−1A−1.

More generally, the product of n × n invertible matrices is invertible, and the inverse
is the product of their inverses in the reverse order.

3. If A is an invertible matrix, then so is AT , and the inverse of AT is the transpose of
A−1. That is,

(AT )−1 = (A−1)T .

We will soon see that an invertible matrix A is row equivalent to an identity matrix,
and we can find A−1 by tracking the row reduction of A to I. Before that, we describe how
elementary row operations can be expressed in terms of matrices.

An elementary matrix is one that is obtained by performing a single elementary row
operation (scale, replace, swap) on an identity matrix. The next example illustrates the
three kinds of elementary matrices.

Example 6. Let E1 =

 1 0 0
0 1 0
−4 0 1

 , E2 =

0 1 0
1 0 0
0 0 1

 , E3 =

1 0 0
0 1 0
0 0 5

 , A =

a b c
d e f
g h i

 .

Compute E1A,E2A, and E3A, and describe how these products can be obtained by elementary
row operations on A.

It turns out that each elementary matrix E is invertible. The inverse of E is the elemen-
tary matrix that transforms E back to I.

Example 7. Find the inverse of E1 =

 1 0 0
0 1 0
−4 0 1

 .

The following theorem tells us how to see if a matrix is invertible, and it leads to a
method for finding the inverse of a matrix.

Theorem 8. An n × n matrix A is invertible if and only if A is row equivalent to In, and
in this case, any sequence of elementary row operations that reduces A to In also transforms
In into A−1.
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If we place A and I side by side to form an augmented matrix [A I], then row operations
on this matrix produce identical operations on A and on I. By Theorem 8, either there are
row operations that transform A to In, and In to A−1 or else A is not invertible.

Algorithm for finding A−1

Row reduce the augmented matrix [A I]. If A is row equivalent to I, then [A I] is
row equivalent to [I A−1]. Otherwise A does not have an inverse.

Example 9. Find the inverse of the matrix A =

0 1 2
1 0 3
4 −3 8

, if it exists.

In real life, one might need some, but not all of the entries of A−1. In general, it’s
an expensive computation to produce all of the entries of A−1. Here’s how to get a few
columns’ worth of A−1. Denote the columns of In by e1, . . . en. Then row reduction of
[A I] to [I A−1] can be viewed as the simultaneous solution of the n systems

Ax = e1, Ax = e2, . . . , Ax = en, (1)

where the “augmented columns” of these systems have all been placed next to A to form

[A e1 e2 · · · en] = [A I].

The equation AA−1 = I and the definition of matrix multiplication show that the columns
of A−1 are precisely the solutions of the systems in 1. Thus if we are just after a few columns
of A−1, it is enough to solve the corresponding systems in (1).
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