Professor Jennifer Balakrishnan, jbala@bu.edu

What is on today

1	Matrix operations	1
2	The inverse of a matrix	1

1 Matrix operations

Lay–Lay–McDonald §2.1 pp. 101 – 102

We finish this section by recapping some properties of matrix transposes:

Theorem 1. Let A and B denote matrices whose sizes are appropriate for the following sums and products.

- 1. $(A^T)^T = A$
- 2. $(A+B)^T = A^T + B^T$
- 3. For any scalar r, $(rA)^T = rA^T$
- 4. $(AB)^T = B^T A^T$

2 The inverse of a matrix

Lay–Lay–McDonald $\S 2.2$ pp. 104-111

Today we discuss what it means to invert a matrix A; that is, to compute a matrix A^{-1} such that

$$A^{-1}A = AA^{-1} = I.$$

An $n \times n$ matrix A is said to be *invertible* if there is an $n \times n$ matrix C such that CA = Iand AC = I, where $I = I_n$, the $n \times n$ identity matrix. In this case, C is an inverse of A. The inverse of a matrix A is unique, and we denote it as A^{-1} . A matrix that is not invertible is sometimes called a singular matrix, and an invertible matrix is called a nonsingular matrix.

Example 2. Let
$$A = \begin{bmatrix} 2 & 5 \\ -3 & -7 \end{bmatrix}$$
, $C = \begin{bmatrix} -7 & -5 \\ 3 & 2 \end{bmatrix}$. Compute AC and CA.

Theorem 3. Let
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
. If $ad - bc \neq 0$, then A is invertible, and
$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}.$$

If ad - bc = 0, then A is not invertible.

The quantity above of ad - bc is called the *determinant* of A (in the case of a 2×2 matrix), and we write det A = ad - bc.

Invertible matrices are very useful for solving matrix equations. In fact, we have the following theorem:

Theorem 4. If A is an invertible $n \times n$ matrix, then for each $\mathbf{b} \in \mathbb{R}^n$, the equation $A\mathbf{x} = \mathbf{b}$ has the unique solution $\mathbf{x} = A^{-1}\mathbf{b}$.

Proof. Let $\mathbf{b} \in \mathbb{R}^n$. Since A is invertible, we may compute $\mathbf{x} = A^{-1}\mathbf{b}$, and we see that

$$A\mathbf{x} = AA^{-1}\mathbf{b} = I\mathbf{b} = \mathbf{b},$$

so **x** is certainly a solution to the equation. To check uniqueness, suppose that we have another solution **u** of the equation; that is $A\mathbf{u} = \mathbf{b}$. Then multiplying both sides of the equation by A^{-1} yields

$$A^{-1}A\mathbf{u} = A^{-1}\mathbf{b} \quad \Rightarrow \quad I\mathbf{u} = A^{-1}\mathbf{b} \quad \Rightarrow \quad \mathbf{u} = A^{-1}\mathbf{b},$$

and we see that $\mathbf{u} = \mathbf{x}$.

Example 5. Use an inverse matrix to solve the system

$$3x_1 + 4x_2 = 3$$

$$5x_1 + 6x_2 = 7.$$

Here are some useful results about invertible matrices:

1. If A is an invertible matrix, then A^{-1} is invertible, and

$$(A^{-1})^{-1} = A.$$

$$(AB)^{-1} = B^{-1}A^{-1}$$

More generally, the product of $n \times n$ invertible matrices is invertible, and the inverse is the product of their inverses in the reverse order.

3. If A is an invertible matrix, then so is A^T , and the inverse of A^T is the transpose of A^{-1} . That is,

$$(A^T)^{-1} = (A^{-1})^T$$

We will soon see that an invertible matrix A is row equivalent to an identity matrix, and we can find A^{-1} by tracking the row reduction of A to I. Before that, we describe how elementary row operations can be expressed in terms of matrices.

An *elementary matrix* is one that is obtained by performing a single elementary row operation (scale, replace, swap) on an identity matrix. The next example illustrates the three kinds of elementary matrices.

Example 6. Let
$$E_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix}$$
, $E_2 = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, $E_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 5 \end{bmatrix}$, $A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$.

Compute E_1A , E_2A , and E_3A , and describe how these products can be obtained by elementary row operations on A.

It turns out that each elementary matrix E is invertible. The inverse of E is the elementary matrix that transforms E back to I.

Example 7. Find the inverse of $E_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix}$.

The following theorem tells us how to see if a matrix is invertible, and it leads to a method for finding the inverse of a matrix.

Theorem 8. An $n \times n$ matrix A is invertible if and only if A is row equivalent to I_n , and in this case, any sequence of elementary row operations that reduces A to I_n also transforms I_n into A^{-1} . If we place A and I side by side to form an augmented matrix $\begin{bmatrix} A & I \end{bmatrix}$, then row operations on this matrix produce identical operations on A and on I. By Theorem 8, either there are row operations that transform A to I_n , and I_n to A^{-1} or else A is not invertible.

Algorithm for finding A^{-1}

Row reduce the augmented matrix $[A \ I]$. If A is row equivalent to I, then $[A \ I]$ is row equivalent to $[I \ A^{-1}]$. Otherwise A does not have an inverse.

Example 9. Find the inverse of the matrix $A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 0 & 3 \\ 4 & -3 & 8 \end{bmatrix}$, if it exists.

In real life, one might need some, but not all of the entries of A^{-1} . In general, it's an expensive computation to produce all of the entries of A^{-1} . Here's how to get a few columns' worth of A^{-1} . Denote the columns of I_n by $\mathbf{e}_1, \ldots \mathbf{e}_n$. Then row reduction of $[A \ I]$ to $[I \ A^{-1}]$ can be viewed as the simultaneous solution of the *n* systems

$$A\mathbf{x} = \mathbf{e}_1, \quad A\mathbf{x} = \mathbf{e}_2, \quad \dots, \quad A\mathbf{x} = \mathbf{e}_n,$$
 (1)

where the "augmented columns" of these systems have all been placed next to A to form

$$\begin{bmatrix} A & \mathbf{e}_1 & \mathbf{e}_2 & \cdots & \mathbf{e}_n \end{bmatrix} = \begin{bmatrix} A & I \end{bmatrix}.$$

The equation $AA^{-1} = I$ and the definition of matrix multiplication show that the columns of A^{-1} are precisely the solutions of the systems in 1. Thus if we are just after a few columns of A^{-1} , it is enough to solve the corresponding systems in (1).