Professor Jennifer Balakrishnan, jbala@bu.edu

What is on today

1 Vector Spaces and Subspaces

1

1 Vector Spaces and Subspaces

Lay–Lay–McDonald $\S4.1$ pp. 192-197

The work we've been doing with vectors in \mathbb{R}^n can be understood in a more general framework once we have the notion of a *vector space*, which will be our object of study today.

Definition 1. A (real) vector space is a nonempty set V of objects, called vectors, on which are defined two operations, addition and multiplication by scalars (real numbers), subject to the ten axioms below. The axioms must hold for all vectors $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ and for all scalars c, d.

- 1. $\mathbf{u} + \mathbf{v} \in V$.
- 2. $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$.
- 3. $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w}).$
- 4. There is a zero vector $\mathbf{0} \in V$ such that $\mathbf{u} + \mathbf{0} = \mathbf{u}$.
- 5. For each $\mathbf{u} \in V$, there is a vector $-\mathbf{u} \in V$ such that $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$.
- $\textit{6. } c\mathbf{u} \in V.$
- 7. $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$.
- 8. $(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$.
- 9. $c(d\mathbf{u}) = (cd)\mathbf{u}$.
- *10.* 1**u** = **u**.

Note that the zero vector $\mathbf{0}$ is unique, and for each $\mathbf{u} \in V$, its negative $-\mathbf{u}$ is unique. **Example 2.** The spaces \mathbb{R}^n for $n \ge 1$ are vector spaces.

Example 3. For $n \ge 0$, the set P_n of polynomials of degree at most n consists of all polynomials of the form

$$p(t) = a_0 + a_1 t + \dots + a_n t^n,$$

where the coefficients a_0, a_1, \ldots, a_n are real numbers. If $p(t) = a_0 \neq 0$, the degree of p is zero. If all of the coefficients are zero, p is called the zero polynomial. Show that P_n is a vector space.

Example 4. Let V be the set of all real-valued functions defined on a set D (where D is \mathbb{R} or some interval on the real line). Show that V is a vector space.

In many problems, a vector space consists of a subset of vectors from some larger vector space. In this case, only three of the ten vector space axioms need to be checked; the rest are automatically satisfied.

Definition 5. A subspace of a vector space V is a subset H of V that has three properties:

- 1. The zero vector of V is in H.
- 2. *H* is closed under vector addition: $\mathbf{u}, \mathbf{v} \in H \Rightarrow \mathbf{u} + \mathbf{v} \in H$.
- 3. *H* is closed under multiplication by scalars: if *c* is a scalar and $\mathbf{u} \in H$, then $c\mathbf{u} \in H$.

Example 6. Is the set consisting of the zero vector in a vector space V a subspace of V?

Example 7. Let P be the set of all polynomials with real coefficients, with the usual operations in P. Then P is a subspace of the space of all real-valued functions on \mathbb{R} . Also, for each $n \geq 0$, P_n is a subspace of P.

Example 8. The vector space \mathbb{R}^2 is not a subspace of \mathbb{R}^3 , since \mathbb{R}^2 is not a subset of \mathbb{R}^3 . However, the set $H = \left\{ \begin{bmatrix} s \\ t \\ 0 \end{bmatrix} \right\}$ where $s, t \in \mathbb{R}$ is a subset of \mathbb{R}^3 . Show that H is a subspace of \mathbb{R}^3 .

Example 9. Consider a plane in \mathbb{R}^3 not through the origin. Is it a subspace of \mathbb{R}^3 ?

Example 10. Let V be a vector space, and let $\mathbf{v}_1, \mathbf{v}_2 \in V$. Let $H = Span\{\mathbf{v}_1, \mathbf{v}_2\}$ be the set of all linear combinations of $\mathbf{v}_1, \mathbf{v}_2$. Show that H is a subspace of V.

The argument in the previous example can be generalized to prove the following:

Theorem 11. If $\mathbf{v}_1, \ldots, \mathbf{v}_p$ are in a vector space V, then Span $\{\mathbf{v}_1, \ldots, \mathbf{v}_p\}$ is a subspace of V.

We call $\text{Span}\{\mathbf{v}_1, \ldots, \mathbf{v}_p\}$ the subspace spanned (or generated) by $\{\mathbf{v}_1, \ldots, \mathbf{v}_p\}$. Given any subspace H of V, a spanning (or generating) set for H is a set $\{\mathbf{v}_1, \ldots, \mathbf{v}_p\}$ in H such that $H = \text{Span}\{\mathbf{v}_1, \ldots, \mathbf{v}_p\}$. **Example 13.** For what values of h will \mathbf{y} be in the subspace of \mathbb{R}^3 spanned by $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ if $\mathbf{v}_1 = \begin{bmatrix} 1 \\ -1 \\ -2 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 5 \\ -4 \\ -7 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} -3 \\ 1 \\ 0 \end{bmatrix}, \mathbf{y} = \begin{bmatrix} -4 \\ 3 \\ h \end{bmatrix}$?

Example 14. Show that the set H of all points of \mathbb{R}^2 of the form (3a, 2+5a) is not a vector space.