1

2

Professor Jennifer Balakrishnan, jbala@bu.edu

What is on today

1 Rank

2 Change of basis

1 Rank

Lay–Lay–McDonald §4.6 pp. 235 – 237

Recall this example from the last class:

Example 1. Find the dimensions of the null space and the column space of

	$\left[-3\right]$	6	-1	1	-7	
A =	1	-2	2	3	-1	•
A =	2	-4	5	8	-4	

We define the rank of a matrix A to be the dimension of the column space of A. The following is a nice result about how the rank and the dimension of the null space are related:

Theorem 2. Let A be an $m \times n$ matrix. We have

 $\operatorname{rank} A + \operatorname{dim} \operatorname{Nul} A = n.$

To summarize, here is a collection of things we've learned over the last few classes and how they relate to invertibility of a matrix:

Theorem 3 (Invertible Matrix Theorem (continued)). Let A be an $n \times n$ matrix. Then the following statements are each equivalent to the statement that A is an invertible matrix:

- 1. The columns of A form a basis of \mathbb{R}^n .
- 2. $\operatorname{Col} A = \mathbb{R}^n$.
- 3. dim $\operatorname{Col} A = n$.
- 4. rank A = n.
- 5. Nul $A = \{0\}$.
- 6. dim Nul A = 0.

2 Change of basis

Lay-Lay-McDonald §4.7 pp. 241 – 244

In some applications, a problem is described initially using a basis \mathcal{B} , but the problem is easier to solve by changing \mathcal{B} to a new basis \mathcal{C} . Each vector is assigned a new \mathcal{C} -coordinate vector. In this section, we study how $[\mathbf{x}]_{\mathcal{C}}$ and $[\mathbf{x}]_{\mathcal{B}}$ are related for each $\mathbf{x} \in V$.

Example 4. Consider two bases $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2\}$ and $\mathcal{C} = \{\mathbf{c}_1, \mathbf{c}_2\}$ for a vector space V, such that $\mathbf{b}_1 = 4\mathbf{c}_1 + \mathbf{c}_2$ and $\mathbf{b}_2 = -6\mathbf{c}_1 + \mathbf{c}_2$. Suppose $\mathbf{x} = 3\mathbf{b}_1 + \mathbf{b}_2$. That is, suppose $[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} 3\\1 \end{bmatrix}$. Find $[\mathbf{x}]_{\mathcal{C}}$.

We can generalize the argument in the example above to produce the following theorem:

Theorem 5. Let $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ and $\mathcal{C} = \{\mathbf{c}_1, \dots, \mathbf{c}_n\}$ be bases of a vector space V. Then there is a unique $n \times n$ matrix $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}$ such that

$$[\mathbf{x}]_{\mathcal{C}} = \underset{\mathcal{C} \leftarrow \mathcal{B}}{P}[\mathbf{x}]_{\mathcal{B}}.$$

The columns of $P_{\mathcal{C}_{\mathcal{L}_{\mathcal{B}}}}$ are the \mathcal{C} -coordinate vectors of the vectors in the basis \mathcal{B} . That is,

$$\underset{\mathcal{C}\leftarrow\mathcal{B}}{P} = [[\mathbf{b}_1]_{\mathcal{C}} \quad [\mathbf{b}_2]_{\mathcal{C}} \quad \cdots \quad [\mathbf{b}_n]_{\mathcal{C}}].$$

The matrix $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}$ is called the *change-of-coordinates matrix from* \mathcal{B} to \mathcal{C} . Multiplication by $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}$ converts \mathcal{B} -coordinates into \mathcal{C} -coordinates. The columns of $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}$ are linearly independent because they are the coordinate vectors of the linearly independent set \mathcal{B} , and since $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}$ is square, it is invertible by the Invertible Matrix Theorem. Indeed, we have

$$\begin{pmatrix} P \\ \mathcal{C} \leftarrow \mathcal{B} \end{pmatrix}^{-1} [\mathbf{x}]_{\mathcal{C}} = [\mathbf{x}]_{\mathcal{B}}.$$

Thus $\begin{pmatrix} P \\ C \leftarrow B \end{pmatrix}^{-1}$ is the matrix that converts *C*-coordinates to *B*-coordinates. That is,

$$\left(\underset{\mathcal{C}\leftarrow\mathcal{B}}{P}\right)^{-1}=\underset{\mathcal{B}\leftarrow\mathcal{C}}{P}.$$

Now if $\mathcal{B} = {\mathbf{b}_1, \ldots, \mathbf{b}_n}$ and \mathcal{E} is the *standard basis* ${\mathbf{e}_1, \ldots, \mathbf{e}_n}$ in \mathbb{R}^n , then $[\mathbf{b}_1]_{\mathcal{E}} = \mathbf{b}_1$ and likewise for the other vectors in the basis. In this case, $\underset{\mathcal{E} \leftarrow \mathcal{B}}{P}$ is the same as the changeof-coordinates matrix $P_{\mathcal{B}}$ introduced previously, namely,

$$P_{\mathcal{B}} = [\mathbf{b}_1 \quad \mathbf{b}_2 \quad \cdots \quad \mathbf{b}_n].$$

Example 6. Let $\mathbf{b}_1 = \begin{bmatrix} -9\\1 \end{bmatrix}$, $\mathbf{b}_2 = \begin{bmatrix} -5\\-1 \end{bmatrix}$, $\mathbf{c}_1 = \begin{bmatrix} 1\\-4 \end{bmatrix}$, $\mathbf{c}_2 = \begin{bmatrix} 3\\-5 \end{bmatrix}$, and consider the bases for \mathbb{R}^2 given by $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2\}$ and $\mathcal{C} = \{\mathbf{c}_1, \mathbf{c}_2\}$. Find the change-of-coordinates matrix from \mathcal{B} to \mathcal{C} .

Example 7. Let $\mathbf{b}_1 = \begin{bmatrix} 1 \\ -3 \end{bmatrix}$, $\mathbf{b}_2 = \begin{bmatrix} -2 \\ 4 \end{bmatrix}$, $\mathbf{c}_1 = \begin{bmatrix} -7 \\ 9 \end{bmatrix}$, $\mathbf{c}_2 = \begin{bmatrix} -5 \\ 7 \end{bmatrix}$, and consider the bases for \mathbb{R}^2 given by $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2\}$ and $\mathcal{C} = \{\mathbf{c}_1, \mathbf{c}_2\}$.

1. Find the change-of-coordinates matrix from C to \mathcal{B} .

2. Find the change-of-coordinates matrix from \mathcal{B} to \mathcal{C} .