Professor Jennifer Balakrishnan, jbala@bu.edu

What is on today

1 Inner product, length, and orthogonality

1

2 Orthogonal sets

3

1 Inner product, length, and orthogonality

Lay-Lay-McDonald $\S 6.1$ pp. 332 - 338

Today we explore length, distance, and perpendicularity for vectors in \mathbb{R}^n . All three ideas are defined in terms of the *inner product* of two vectors.

If \mathbf{u} and \mathbf{v} are vectors in \mathbb{R}^n , then we can think of them as $n \times 1$ matrices. The transpose \mathbf{u}^T is a $1 \times n$ matrix, and the matrix product $\mathbf{u}^T \mathbf{v}$ is a 1×1 matrix, which is a scalar. This scalar is called the *inner product* of \mathbf{u} and \mathbf{v} and is often written as $\mathbf{u} \cdot \mathbf{v}$ and called the *dot*

product. If $\mathbf{u} = \begin{bmatrix} u_1 \\ \vdots \\ u_n \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix}$, then the inner product of \mathbf{u} and \mathbf{v} is

$$\begin{bmatrix} u_1 & \cdots & u_n \end{bmatrix} \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix} = u_1 v_1 + \cdots + u_n v_n.$$

Example 1. Let $\mathbf{u} = \begin{bmatrix} 2 \\ -5 \\ -1 \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} 3 \\ 2 \\ -3 \end{bmatrix}$. Compute $\mathbf{u} \cdot \mathbf{v}$ and $\mathbf{v} \cdot \mathbf{u}$.

Here are properties of the inner product:

Theorem 2. Let $\mathbf{u}, \mathbf{v}, \mathbf{w}$ be vectors in \mathbb{R}^n , and let c be a scalar. Then

- 1. $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$
- 2. $(\mathbf{u} + \mathbf{v}) \cdot \mathbf{w} = \mathbf{u} \cdot \mathbf{w} + \mathbf{v} \cdot \mathbf{w}$
- 3. $(c\mathbf{u}) \cdot \mathbf{v} = c(\mathbf{u} \cdot \mathbf{v}) = \mathbf{u} \cdot (c\mathbf{v})$
- 4. $\mathbf{u} \cdot \mathbf{u} \ge 0$ and $\mathbf{u} \cdot \mathbf{u} = 0$ if and only if $\mathbf{u} = \mathbf{0}$.

Definition 3. Let \mathbf{v} be a vector in \mathbb{R}^n with entries v_1, \ldots, v_n . The length (or norm) of \mathbf{v} is the nonnegative scalar $||\mathbf{v}||$ defined by

$$||\mathbf{v}|| = \sqrt{\mathbf{v} \cdot \mathbf{v}} = \sqrt{v_1^2 + \dots + v_n^2},$$

and $||\mathbf{v}||^2 = \mathbf{v} \cdot \mathbf{v}$.

Note that if $\mathbf{v} \in \mathbb{R}^2$, then ||v|| coincides with the standard notion of the length of the line segment from the origin to \mathbf{v} by the Pythagorean Theorem.

For any scalar c, we have

$$||c\mathbf{v}|| = |c|||\mathbf{v}||.$$

A vector whose length is 1 is called a *unit vector*. If we divide a nonzero vector \mathbf{v} by its length, we obtain a unit vector \mathbf{u} because the length of \mathbf{u} is $\left(\frac{1}{||\mathbf{v}||}\right)||\mathbf{v}||$. The process of creating \mathbf{u} from \mathbf{v} is called *normalizing* \mathbf{v} and we say that \mathbf{u} is in the same direction as \mathbf{v} .

Example 4. Let $\mathbf{v} = \begin{bmatrix} 1 \\ -2 \\ 2 \\ 0 \end{bmatrix}$. Find a unit vector \mathbf{u} in the same direction as \mathbf{v} .

Example 5. Let W be the subspace of \mathbb{R}^2 spanned by $\mathbf{x} = \begin{bmatrix} \frac{2}{3} \\ 1 \end{bmatrix}$. Find a unit vector \mathbf{z} that is a basis for W.

Recall that if a, b are real numbers, the distance on the number line between a and b is given by the absolute value |a - b|. This definition of distance in \mathbb{R} has a direct analogue in \mathbb{R}^n .

Definition 6. For \mathbf{u} and \mathbf{v} in \mathbb{R}^n , the distance between \mathbf{u} and \mathbf{v} , written as $dist(\mathbf{u}, \mathbf{v})$, is the length of the vector $\mathbf{u} - \mathbf{v}$. That is, $dist(\mathbf{u}, \mathbf{v}) = ||\mathbf{u} - \mathbf{v}||$.

Example 7. Compute the distance between the vectors $\mathbf{u} = \begin{bmatrix} 7 \\ 1 \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$.

Definition 8. Two vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ are orthogonal if $\mathbf{u} \cdot \mathbf{v} = \mathbf{0}$.

Note that the zero vector is orthogonal to every vector in \mathbb{R}^n .

Here is a useful result about orthogonality:

Theorem 9 (Pythagorean Theorem). Two vectors \mathbf{u} and \mathbf{v} are orthogonal if and only if $||\mathbf{u} + \mathbf{v}||^2 = ||\mathbf{u}||^2 + ||\mathbf{v}||^2$.

If a vector \mathbf{z} is orthogonal to every vector in a subspace W of \mathbb{R}^n , then \mathbf{z} is said to be orthogonal to W. The set of all vectors \mathbf{z} that are orthogonal to W is called the *orthogonal complement* of W and is denoted by W^{\perp} .

Let W be a subspace of \mathbb{R}^n . Here are two facts about orthogonal complements.

- 1. A vector \mathbf{x} is in W^{\perp} iff \mathbf{x} is orthogonal to every vector in a set that spans W.
- 2. W^{\perp} is a subspace of \mathbb{R}^n .

Here is another relationship between the null space and column space of a matrix.

Theorem 10. Let A be an $m \times n$ matrix. The orthogonal complement of the column space of A is the null space of A^T : $(\operatorname{Col} A)^{\perp} = \operatorname{Nul} A^T$.

2 Orthogonal sets

A set of vectors $\{\mathbf{u}_1, \dots, \mathbf{u}_p\}$ in \mathbb{R}^n is said to be an *orthogonal set* if each pair of distinct vectors from the set is orthogonal.

Example 11. Show that $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ is an orthogonal set, where $\mathbf{u}_1 = \begin{bmatrix} 3 \\ 1 \\ 1 \end{bmatrix}, \mathbf{u}_2 = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}, \mathbf{u}_3 = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$

$$\begin{bmatrix} -\frac{1}{2} \\ -2 \\ \frac{7}{2} \end{bmatrix}.$$

Theorem 12. If $S = \{\mathbf{u}_1, \dots, \mathbf{u}_p\}$ is an orthogonal set of nonzero vectors in \mathbb{R}^n , then S is linearly independent and hence is a basis for the subspace spanned by S.

Proof. If $\mathbf{0} = c_1 \mathbf{u}_1 + \cdots + c_p \mathbf{u}_p$ for some scalars c_1, \dots, c_p , then

$$0 = \mathbf{0} \cdot \mathbf{u}_1 = (c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + \dots + c_p \mathbf{u}_p) \cdot \mathbf{u}_1$$

= $(c_1 \mathbf{u}_1) \cdot \mathbf{u}_1 + (c_2 \mathbf{u}_2) \cdot \mathbf{u}_1 + \dots + (c_p \mathbf{u}_p) \cdot \mathbf{u}_1$
= $c_1(\mathbf{u}_1 \cdot \mathbf{u}_1) + c_2(\mathbf{u}_2 \cdot \mathbf{u}_1) + \dots + c_p(\mathbf{u}_p \cdot \mathbf{u}_1)$
= $c_1(\mathbf{u}_1 \cdot \mathbf{u}_1)$

because \mathbf{u}_1 is orthogonal to $\mathbf{u}_2, \dots, \mathbf{u}_p$. Since \mathbf{u}_1 is nonzero, $\mathbf{u}_1 \cdot \mathbf{u}_1$ is not zero, and so $c_1 = 0$. Similarly, c_2, \dots, c_p must be zero. Thus S is linearly independent.

Definition 13. An orthogonal basis for a subspace W of \mathbb{R}^n is a basis for W that is also an orthogonal set.

The next theorem tells us why an orthogonal basis is nicer than other bases. The weights in a linear combination can be computed easily.

Theorem 14. Let $\{\mathbf{u}_1, \ldots, \mathbf{u}_p\}$ be an orthogonal basis for a subspace W of \mathbb{R}^n . For each \mathbf{y} in W, the weights in the linear combination

$$\mathbf{y} = c_1 \mathbf{u}_1 + \dots + c_p \mathbf{u}_p$$

are given by

$$c_j = \frac{\mathbf{y} \cdot \mathbf{u}_j}{\mathbf{u}_j \cdot \mathbf{u}_j}, \quad j = 1, \dots, p.$$

Example 15. The set $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ in the previous example is an orthogonal basis for \mathbb{R}^3 .

Express the vector $\mathbf{y} = \begin{bmatrix} 6 \\ 1 \\ -8 \end{bmatrix}$ as a linear combination of the vectors in S.

Given a nonzero vector \mathbf{u} in \mathbb{R}^n , we consider the problem of decomposing a vector $\mathbf{y} \in \mathbb{R}^n$ into the sum of two vectors, one a multiple of \mathbf{u} and the other orthogonal to \mathbf{u} . That is, we want to write

$$\mathbf{y} = \hat{\mathbf{y}} + \mathbf{z},\tag{1}$$

where $\hat{\mathbf{y}} = \alpha \mathbf{u}$ for some scalar α and \mathbf{z} is orthogonal to \mathbf{u} . Equation (1) is satisfied under these constraints if and only if $\alpha = \frac{\mathbf{y} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}}$ and

$$\hat{\mathbf{y}} = \frac{\mathbf{y} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u}.$$

The vector $\hat{\mathbf{y}}$ is called the *orthogonal projection of* \mathbf{y} *onto* \mathbf{u} and the vector \mathbf{z} is called the *component of* \mathbf{y} *orthogonal to* \mathbf{u} .

Example 16. Let $\mathbf{y} = \begin{bmatrix} 7 \\ 6 \end{bmatrix}$, $\mathbf{u} = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$. Find the orthogonal projection of \mathbf{y} onto \mathbf{u} . Then write \mathbf{y} as the sum of two orthogonal vectors, one in $Span\{\mathbf{u}\}$ and one orthogonal to \mathbf{u} .