Professor Jennifer Balakrishnan, jbala@bu.edu

## What is on today

1 The Gram-Schmidt process

1

## 1 The Gram-Schmidt process

Lay–Lay–McDonald §6.4 pp. 356 – 360

The Gram-Schmidt algorithm produces an orthogonal basis for any nonzero subspace of  $\mathbb{R}^n$ . We illustrate it with a few examples and then state the algorithm as a theorem.

**Example 1.** Let  $W = \text{Span}\{\mathbf{x}_1, \mathbf{x}_2\}$ , where  $\mathbf{x}_1 = \begin{bmatrix} 3 \\ 6 \\ 0 \end{bmatrix}$  and  $\mathbf{x}_2 = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$ . Construct an orthogonal basis  $\{\mathbf{v}_1, \mathbf{v}_2\}$  for W.

**Example 2.** Let  $\mathbf{x}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$ ,  $\mathbf{x}_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \end{bmatrix}$ ,  $\mathbf{x}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}$ . Then  $\{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3\}$  is linearly independent and is a basis for a subspace W of  $\mathbb{R}^4$ . Construct an orthogonal basis for W.

**Theorem 3** (Gram-Schmidt Orthogonalization). Given a basis  $\{\mathbf{x}_1, \ldots, \mathbf{x}_p\}$  for a nonzero subspace W of  $\mathbb{R}^n$ , define

$$\mathbf{v}_{1} = \mathbf{x}_{1}$$

$$\mathbf{v}_{2} = \mathbf{x}_{2} - \frac{\mathbf{x}_{2} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1}$$

$$\mathbf{v}_{3} = \mathbf{x}_{3} - \frac{\mathbf{x}_{3} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1} - \frac{\mathbf{x}_{3} \cdot \mathbf{v}_{2}}{\mathbf{v}_{2} \cdot \mathbf{v}_{2}} \mathbf{v}_{2}$$

$$\vdots$$

$$\mathbf{v}_{p} = \mathbf{x}_{p} - \frac{\mathbf{x}_{p} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1} - \frac{\mathbf{x}_{p} \cdot \mathbf{v}_{2}}{\mathbf{v}_{2} \cdot \mathbf{v}_{2}} \mathbf{v}_{2} - \dots - \dots \frac{\mathbf{x}_{p} \cdot \mathbf{v}_{p-1}}{\mathbf{v}_{p-1} \cdot \mathbf{v}_{p-1}} \mathbf{v}_{p-1}.$$

Then  $\{\mathbf{v}_1, \ldots, \mathbf{v}_p\}$  is an orthogonal basis for W. In addition  $\operatorname{Span}\{\mathbf{v}_1, \ldots, \mathbf{v}_k\} = \operatorname{Span}\{\mathbf{x}_1, \ldots, \mathbf{x}_k\}$ for  $1 \le k \le p$ .

An orthonormal basis is easily constructed from an orthogonal basis  $\{\mathbf{v}_1, \ldots, \mathbf{v}_p\}$ : just normalize (rescale) all of the  $\mathbf{v}_k$ . When doing these computations, it's easier to normalize the full basis at the end rather than each individual vector as soon as it is found.

If an  $m \times n$  matrix A has linearly independent columns  $\mathbf{x}_1, \ldots, \mathbf{x}_n$ , then applying Gram-Schmidt (with normalizations) to  $\mathbf{x}_1, \ldots, \mathbf{x}_n$  amounts to factoring A, as described in the next theorem. This factorization is widely used in algorithms for solving equations and finding eigenvalues.

**Theorem 4** (QR factorization). If A is an  $m \times n$  matrix with linearly independent columns, then A can be factored as A = QR, where Q is an  $m \times n$  matrix whose columns form an orthonormal basis for Col A and R is an  $n \times n$  upper triangular invertible matrix with positive entries on its diagonal.

Example 5. Find a QR factorization of  $A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$ .