Professor Jennifer Balakrishnan, jbala@bu.edu

What is on today

1	Introduction	1
2	Approximating area under curves and Riemann sums	1
3	Definite integrals	4
4	The Fundamental Theorem of Calculus	6
5	Substitution rule	8

1 Introduction

- Please refer to the syllabus for all course details.
- How lectures will work:
 - Notes will be available online (http://math.bu.edu/people/jbala/124.html) for use in each class.
 - We will use Learning Catalytics (through MyMathLab).
- This week:
 - Today we will review some topics in Chapter 5.
 - You will have a review worksheet covering topics in Chapter 5 during the first discussion session.
 - Let your TF know if you have not covered a specific topic.
- This course will focus on applications of integration, techniques for integration, sequences and series, and power series (Chapters 6 to 9 of the textbook).

2 Approximating area under curves and Riemann sums

Briggs-Cochran-Gillett §5.1 pp. 333 - 347

Consider a car moving with velocity $v(t) = t^2 mi/hr$, from t = 0 to t = 8. To calculate its displacement, we can approximate the area under the curve using rectangles:

To get better approximations, we could continue to subdivide the interval. Here we used the **midpoint** value for an approximate value of the velocity on the interval. We could also have used the **left endpoint** or the **right endpoint** (or any other point really...).

The process of **approximating the area below a curve** using areas of rectangles is known as computing **Riemann sums**. This is useful for much more than computing displacements.

Definition 1. Given an interval [a, b] and a positive integer n, we compute

$$\Delta x = \frac{b-a}{n}.$$

Then we subdivide the interval into n subintervals by letting

$$x_0 = a \text{ and } x_k = x_{k-1} + \Delta x.$$

Then $x_n = b$. The endpoints x_0, x_1, \ldots, x_n of the subintervals are called **grid points**. The equally spaced numbers x_k form a **regular partition** of [a, b].

Let f be a function defined on an interval [a, b] that we have partitioned into n intervals.

A **Riemann sum** is computed by adding the areas of any rectangles with bases in the subintervals in the partition and height equal to $f(x_k^*)$ where x_k^* is some point in the interval:

$$f(x_1^*)\Delta x + f(x_2^*)\Delta x + \ldots + f(x_n^*)\Delta x.$$

- If x_k^* is the left endpoint of $[x_{k-1}, x_k]$ then we call it a **left Riemann sum**
- If x_k^* is the right endpoint of $[x_{k-1}, x_k]$ then we call it a **right Riemann sum**
- If x_k^* is the midpoint of $[x_{k-1}, x_k]$ then we call it a **midpoint Riemann sum**

Example 2 (§5.1, Ex. 34). Let f(x) = 4 - x on [-1, 4], n = 5.

- 1. Sketch the graph of the function on the given interval.
- 2. Calculate Δx and the grid points x_0, \ldots, x_n .
- 3. Illustrate the midpoint Riemann sum by sketching the appropriate rectangles.
- 4. Calculate the midpoint Riemann sum.

When we approximate areas under curves using Riemann sums, we can incrementally subdivide the interval into smaller and smaller pieces. This is a very important idea:

Theorem 3. If f is a positive continuous function on [a, b] then if we take smaller and smaller partitions of [a, b], the Riemann sums are converging to a number that is the area under the curve between x = a and x = b.

Example 4 (§5.1, Ex. 66). Consider the velocity of an object moving along a line:

- 1. Use geometry to find the displacement of the object between t = 0 and t = 3.
- 2. Assuming that the velocity remains 30 m/s for $t \ge 4$, find the function that gives the displacement between t = 0 and any $t \ge 5$.

 $Sigma\ notation$ can be used to express Riemann sums in a compact way. For example, the sum

$$1 + 2 + 3 + \dots + 10$$

is written in sigma notation as

$$\sum_{k=1}^{10} k$$

Here are two useful properties of sigma noation:

- Constant multiple rule: Let c be a constant. Then $\sum_{k=1}^{n} ca_k = c \sum_{k=1}^{n} a_k$.
- Addition rule: $\sum_{k=1}^{n} (a_k + b_k) = \sum_{k=1}^{n} a_k + \sum_{k=1}^{n} b_k.$

The following formulas for sums of powers of integers are also very useful:

Theorem 5 (Sums of powers of integers). Let n be a positive integer and c a real number.

1.
$$\sum_{k=1}^{n} c = cn$$

2. $\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$
3. $\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$
4. $\sum_{k=1}^{n} k^3 = \frac{n^2(n+1)^2}{4}$

Example 6 (§5.1 Ex. 41 g, h). Evaluate the following expressions:

1.
$$\sum_{p=1}^{5} (2p + p^2)$$

2. $\sum_{n=0}^{4} \sin \frac{n\pi}{2}$

3 Definite integrals

Briggs-Cochran-Gillett §5.2 pp. 348 - 361

Section A3

Definition 7 (Definite integral). A function f defined on [a, b] is integrable on [a, b] if the limit $\lim_{\Delta \to 0} \sum_{k=1}^{n} f(x_k^*) \Delta x_k$ exists. This limit is the **definite integral of** f from a to b, which we write

$$\int_{a}^{b} f(x)dx = \lim_{\Delta \to 0} \sum_{k=1}^{n} f(x_{k}^{*})\Delta x_{k}.$$

Definition 8 (Net area). Let R be the region bounded by a continuous function f and the x-axis between x = a and x = b. The net area of R is the sum of the areas of the parts of R that lie above the x-axis minus the area of the parts of R that lie below the x-axis on [a, b].

Geometrically: The *definite integral* corresponds to the net area:

Example 9 (§5.2 Ex. 33, 34, 35, 36). The figure shows the areas of regions bounded by the graph of f and the x-axis. Evaluate the following integrals.

Here are some very important properties of definite integrals:

Let *f* and *g* be integrable functions on an interval that contains *a*, *b*, and *p*. 1. $\int_{a}^{a} f(x) dx = 0$ Definition 2. $\int_{b}^{a} f(x) dx = -\int_{a}^{b} f(x) dx$ Definition 3. $\int_{a}^{b} (f(x) + g(x)) dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx$ 4. $\int_{a}^{b} c f(x) dx = c \int_{a}^{b} f(x) dx$ For any constant *c* 5. $\int_{a}^{b} f(x) dx = \int_{a}^{p} f(x) dx + \int_{p}^{b} f(x) dx$ 6. The function |*f*| is integrable on [*a*, *b*] and $\int_{a}^{b} |f(x)| dx$ is the sum of the areas of the regions bounded by the graph of *f* and the *x*-axis on [*a*, *b*].

4 The Fundamental Theorem of Calculus

Theorem 10 (Fundamental Theorem of Calculus). Let f be a continuous function on [a, b].

1. The net area function $N(x) = \int_a^x f(t)dt$ for $a \leq x \leq b$ is continuous on [a, b] and differentiable on (a, b) and we have

$$N'(x) = \frac{d}{dx} \int_{a}^{x} f(t)dt = f(x),$$

which means the net area function of f is an antiderivative of f on [a, b].

2. If F is any antiderivative of f on [a, b] then

$$\int_{a}^{b} f(x)dx = F(b) - F(a) = F(x)|_{a}^{b}.$$

Part 2 of the FTC is a powerful method for evaluating definite integrals and it is a direct consequence of part 1 (see p. 366 in the textbook).

Hence we have a new method to compute definite integrals $\int_a^b f(x) dx$:

• find any antiderivative of f; call it F;

• compute F(b) - F(a).

Remark 11. This method only works when we can find an antiderivative for f. This is only the case for a relatively small group of functions! The definition of integral is still the limit of Riemann sums and geometrically the net area between the graph and the x-axis in the given interval. You should always remember this! For example functions like $\sin(x^2)$ and e^{x^2} do not have an antiderivative but are continuous and hence integrable in any closed interval!

Example 12 (§5.3 Ex. 30, 34, 40, 47). Evaluate the following integrals using the Fundamental Theorem of Calculus.

1. $\int_0^2 (3x^2 + 2x)dx$

$$2. \quad \int_4^9 \frac{2+\sqrt{t}}{t} dt$$

3.
$$\int_0^{1/2} \frac{dx}{\sqrt{1-x^2}}$$

$$4. \quad \int_0^{\pi/8} \cos 2x dx$$

5 Substitution rule

Briggs-Cochran-Gillett §5.5 pp. 384-393

In the last set of examples, we integrated $\cos 2x$, which brings us to a useful strategy: substitution. If we were to guess at the value of the indefinite integral $\int \cos 2x dx$, perhaps we would start with $\int \cos x dx = \sin x + C$. We might incorrectly conclude that the indefinite integral of $\cos 2x$ is $\sin 2x + C$, but differentiation by the Chain Rule would reveal that

$$\frac{d}{dx}(\sin 2x + C) = 2\cos 2x \neq \cos 2x.$$

But now it's pretty clear that we were just off by a factor of 2 and that

$$\int \cos 2x \, dx = \frac{1}{2} \sin 2x + C.$$

While this works here, this sort of trial-and-error approach is not practical for more complicated integrals, so we introduce the more systematic strategy of *substitution*, which we illustrate in the example of $\int \cos 2x dx$.

We first make the change of variable u = 2x. Then taking d's on both sides, this gives du = 2dx. We now rewrite our given integral:

$$\int \cos 2x dx = \int \cos u \frac{du}{2}$$
$$= \frac{1}{2} \int \cos u \, du$$
$$= \frac{1}{2} \sin u + C$$
$$= \frac{1}{2} \sin 2x + C.$$

We formalize this process as follows:

Theorem 13 (Substitution rule for indefinite integrals). Let u = g(x), where g' is continuous on an interval, and let f be continuous on the corresponding range of g. On that interval,

$$\int f(g(x))g'(x)dx = \int f(u)du.$$

In practice, we apply this theorem as follows:

Substitution Rule (Change of variables)

1. Given an indefinite integral involving a composite function f(g(x)), identify an inner function u = g(x) such that a constant multiple of g'(x) appears in the integrand.

- 2. Substitute u = g(x) and du = g'(x)dx in the integral.
- 3. Evaluate the new indefinite integral with respect to u.
- 4. Rewrite the result in terms of x using u = g(x).

Disclaimer: Not all integrals yield to the Substitution Rule!

Example 14 (§5.5 Ex. 18, 23, 30). Find the following indefinite integrals.

$$1. \int x e^{x^2} \, dx$$

2.
$$\int x^3 (x^4 + 16)^6 dx$$

$$3. \int \frac{3}{1+25y^2} \, dy$$

We also have a Substitution Rule for computing definite integrals:

Theorem 15 (Substitution Rule for definite integrals). Let u = g(x), where g' is continuous on [a, b] and let f be continuous on the range of g. Then

$$\int_{a}^{b} f(g(x))g'(x) \, dx = \int_{g(a)}^{g(b)} f(u) \, du.$$

Example 16 (§5.5 Ex. 40, 44). Compute the following integrals.

$$1. \ \int_0^2 \frac{2x}{(x^2+1)^2} \, dx$$

2.
$$\int_0^4 \frac{p}{\sqrt{9+p^2}} \, dp$$

Example 17 (§5.5 Ex. 82). Find the area of the region bounded by the graph of $f(x) = \frac{x}{\sqrt{x^2 - 9}}$ and the x-axis between x = 4 and x = 5.

Here is a table of integrals you should know:

$\frac{d}{du}F(u) = f(u)$	$\int f(u) du = F(u) + C$
$\frac{d}{du}u^{n+1} = (n+1)u^n$	$\int u^n du = \frac{u^{n+1}}{n+1} + C, n \neq -1$
$\frac{d}{du}\ln u = \frac{1}{u}$	$\int \frac{1}{u} du = \ln u + C$
$\frac{d}{du}\sin u = \cos u$	$\int \cos u du = \sin u + C$
$\frac{d}{du}\cos u = -\sin u$	$\int \sin u du = -\cos u + C$
$\frac{d}{du}\tan u = \sec^2 u$	$\int \sec^2 u du = \tan u + C$
$\frac{d}{du}\sec u = \sec u \tan u$	$\int \sec u \tan u du = \sec u + C$
$\frac{d}{du}e^u = e^u$	$\int e^u du = e^u + C$
$\frac{d}{du}\sin^{-1}u = \frac{1}{\sqrt{1-u^2}}$	$\int \frac{1}{\sqrt{1-u^2}} du = \sin^{-1}u + C$
$\frac{d}{du} \tan^{-1} u = \frac{1}{1+u^2}$	$\int \frac{1}{1+u^2} du = \tan^{-1}u + C$
$\frac{d}{du}\operatorname{sec}^{-1}u = \frac{1}{ u \sqrt{u^2 - 1}}$	$\int \frac{1}{ u \sqrt{u^2 - 1}} du = \sec^{-1} u + C$