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1 Mass and work

Briggs-Cochran-Gillett §6.7 pp. 459 - 467

Density is the concentration of mass in an object. An object with uniform density satisfies
the relationship mass = density · volume. When the density of an object varies, we use
calculus to compute mass:

Definition 1. Suppose a thin bar or wire is represented by the interval a ≤ x ≤ b with a
density function ρ (with units of mass per length). The mass of the object is

m =

∫ b

a

ρ(x)dx.

Example 2 (§6.7 Ex. 10). Find the mass of the thin bar with density function given by
ρ(x) = 1 + x3 for 0 ≤ x ≤ 1.

Work is the change in energy when a force causes a displacement of an object. If a
constant force displaces an object a distance in the direction of the force, the work done is
the force multiplied by the distance. It’s easiest to use metric units for force and work. A
newton (N) is the force required to give a 1-kg mass an acceleration of 1 m/s2. A joule (J)
is 1 newton-meter (N-m), the work done by a 1-N force over a distance of 1m.

We use calculus to understand work done with variable forces.

Definition 3. The work done by a variable force F moving an object along a line from x = a
to x = b in the direction of the force is

W =

∫ b

a

F (x)dx.
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An application of force and work is the stretching and compression of a spring. Suppose
an object is attached to a spring on a frictionless horizontal surface. The object slides back
and forth under the influence of the spring. We say that the spring is at equilibrium when
it is neither compressed nor stretched. It is convenient to let x be the position of the object,
where x = 0 is the equilibrium position.

According to Hooke’s law, the force required to keep the spring in a compressed or
stretched position x units from the equilibrium position is F (x) = kx, where the positive
spring constant k measures the stiffness of the spring. Note that to stretch the spring to a
position x > 0, a force F > 0 (in the positive direction) is required. To compress the spring
to a position x < 0, a force F < 0 (in the negative direction) is required. In other words,
the force required to displace the spring is always in the direction of the displacement.

Example 4 (§6.7 Ex. 20). Suppose a force of 15 N is required to stretch and hold a spring
0.25 m from its equilibrium position.

1. Assuming the spring obeys Hooke’s law, find the spring constant k.

2. How much work is required to compress the spring 0.2 m from its equilibrium position?

3. How much additional work is required to stretch the spring 0.3 m if it has already been
stretched 0.25 m from its equilibrium position?

Another type of work problem arises when the motion is vertical and the force is the
gravitational force. The gravitational force exerted on an object with mass m is F = mg,
where g ≈ 9.8 m/s2 is the acceleration due to gravity near the surface of Earth. The work
in joules required to lift an object of mass m a vertical distance of y meters is

work = Force · distance = mgy.

We can apply calculus to study lifting problems in the context of rope, a chain, or a body of
water. In these situations, different parts of the object are lifted different distances, so we
integrate.

Suppose a fluid is pumped out of a tank to a height h above the bottom of the tank.
How much work is required, assuming the tank is full of water? Here are three observations:

• Water from different levels of the tank is lifted different vertical distances, requiring
different amounts of work.
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• Two equal volumes of water from the same horizontal plane are lifted the same distance
and require the same amount of work.

• A volume V of water has mass ρV , where ρ = 1 g/cm3 = 1000 kg/m3 is the density of
water.

To solve this problem, we let the y-axis point upward with y = 0 at the bottom (“south
pole”) of the tank. We slice cross sections and compute a Riemann sum:

The cross-sectional area of the kth layer at y∗k, denoted A(y∗k), is determined by the shape
of the tank. The volume of the kth layer is approximately A(y∗k)∆y, so the force on the kth
layer is

Fk = mg ≈ A(y∗k)∆y · ρ · g.

To reach the level y = h, the kth layer is lifted to an approximate distance (h− y∗k), so the
work in lifting the kth layer to a height h is approximately

Wk = A(y∗k)∆yρg(h− y∗k).

Summing all layers and taking the limit as ∆y → 0 and the number of layers tends to infinity
gives us that

W =

∫ b

a

ρgA(y)D(y)dy

computes the work in a lifting problem.

Example 5 (§6.7 Ex. 31). A water tank is shaped like an inverted cone with height 6m and
base radius 1.5 m (see figure).
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1. If the tank is full, how
much work is required
to pump the water to
the top of the tank and
out of the tank?

2. Is it true that it takes
half as much work to
pump the water out of
the tank when it is filled
to half its depth as when
it is full? Explain.

Example 6 (§6.7 Ex. 57). A 30-m-long chain hangs vertically from a cylinder attached to
a winch. Assume there is no friction in the system and the chain has a density of 5 kg/m.

1. How much work is required to wind the entire chain onto the cylinder using the winch?

2. How much work is required to wind the chain onto the cylinder if a 50-kg block is
attached to the end of the chain?

2 Exponential models

Briggs-Cochran-Gillett §6.9 pp. 482 - 488
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Exponential functions are used to model problems in a number of fields: finance, medicine,
ecology, biology, physics, to name a few. In this section, we study exponential models.

Exponential growth functions have the form

y(t) = Cekt,

where C is a constant and the rate constant k is positive. If we start with such a function
and take its derivative, we find

y′(t) = kCekt = ky.

We see that the growth rate y′(t) is proportional to the value of the function. Another
interesting quantity to consider is the relative growth rate y′(t)/y(t), which is constant for
exponential functions. Note that the initial value y(0) = C and the rate constant determine
the exponential function completely.

The quantity described by the function y(t) = y0e
kt for k > 0 has a constant doubling

time of T2 = ln 2
k

.
Exponential decay is described by functions of the form y(t) = y0e

−kt. The initial value
of y is y(0) = y0 and the rate constant k > 0 determines the rate of decay. Exponential
decay is characterized by a constant relative decay rate. The constant half-life is T1/2 = ln 2

k
.

Example 7 (§6.9 Ex. 22). A drug is eliminated from the body at a rate of 15% per hour.
After how many hours does the amount of drug reach 10% of the initial dose?

Example 8 (§6.9 Ex. 29). Uranium-238 (U-238) has a half-life of 4.5 billion years. Ge-
ologists find a rock containing a mixture of U-238 and lead, and determine that 85% of the
original U-238 remains; the other 15% has decayed into lead. How old is the rock?
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