MA 124 (Calculus II) Lecture 6: February 7, 2019 Section A3

Professor Jennifer Balakrishnan, jbala@bu.edu
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1 Exponential models

Briggs-Cochran-Gillett §6.9 pp. 482 - 488

Exponential functions are used to model problems in a number of fields: finance, medicine,
ecology, biology, physics, to name a few. In this section, we study exponential models.
Exponential growth functions have the form

y(t) = yoe™,
where 1, is a constant and the rate constant k is positive. If we start with such a function
and take its derivative, we find
Y (t) = kyoe™ = ky.

We see that the growth rate y/(t) is proportional to the value of the function. Another
interesting quantity to consider is the relative growth rate 3/(¢)/y(t), which is constant for
exponential functions. Note that the initial value y(0) = yo and the rate constant determine
the exponential function completely.

The quantity described by the function y(t) = yoe** for k& > 0 has a constant doubling
time of T, = 1%2

Exponential decay is described by functions of the form y(t) = yoe=*. The initial value
of y is y(0) = yo and the rate constant k£ > 0 determines the rate of decay. Exponential

In2

decay is characterized by a constant relative decay rate. The constant half-life is T}/, = %=.

Example 1 (§6.9 Ex. 29). Uranium-238 (U-258) has a half-life of 4.5 billion years. Ge-
ologists find a rock containing a mixture of U-238 and lead, and determine that 85% of the
original U-238 remains; the other 15% has decayed into lead. How old is the rock?
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2 Basic approaches to integration

Briggs-Cochran-Gillett §7.1 pp. 511 - 514

In this section, we review some integration techniques. Here is a table of frequently used
derivatives and antiderivatives:
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Example 2 (§7.1 Ex. 27). Compute [ 7=5dx.
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Example 3 (§7.1 Ex. 30). Evaluate f;‘ 242 .

rz—1

Example 4 (§7.1 Ex. 34). Evaluate f02 dr.

T
z2++4x+-8

Example 5 (§7.1 Ex. 61). Consider the region R bounded by the graph of f(x) = va? + 1
and the z-axis on the interval [0, 2].

1. Find the volume of the solid formed when R is revolved about the x-azis.

2. Find the volume of the solid formed when R is revolved about the y-azxis.



MA 124 (Calculus II) Lecture 6: February 7, 2019 Section A3

3 Integration by parts

Briggs-Cochran-Gillett §7.2 pp. 516 - 520

The technique of integration by parts comes from reversing the product rule for derivatives:

Suppose that u, v are differentiable functions. Then

/udv:uv—/vdu

/ " wa)! () = u(@)o(@)|! / " (el (),

The key is to figure out which function should be u and which one dv.

Example 6. Fvaluate [Inzdz.

Example 7 (§7.2 Ex. 9). Evaluate [ te'dt.

Example 8 (§7.2 Ex. 15). Evaluate [ 2*Inxdz.
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Example 9 (§7.2 Ex. 29). Evaluate [ 2?sin(2z)dz.

Example 10 (§7.2 Ex. 34). Evaluate foln2xe‘” dx.

Example 11 (§7.2 Ex. 41). Find the volume of the solid that is generated when the region
bounded by f(z) = xInx and the z-axis on [1,¢e?] is revolved about the x-amis.
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