Professor Jennifer Balakrishnan, jbala@bu.edu

What is on today

1	Exponential models	1
2	Basic approaches to integration	2
3	Integration by parts	4

1 Exponential models

Briggs-Cochran-Gillett §6.9 pp. 482 - 488

Exponential functions are used to model problems in a number of fields: finance, medicine, ecology, biology, physics, to name a few. In this section, we study exponential models.

Exponential growth functions have the form

$$y(t) = y_0 e^{kt},$$

where y_0 is a constant and the rate constant k is positive. If we start with such a function and take its derivative, we find

$$y'(t) = ky_0 e^{kt} = ky.$$

We see that the growth rate y'(t) is proportional to the value of the function. Another interesting quantity to consider is the relative growth rate y'(t)/y(t), which is constant for exponential functions. Note that the initial value $y(0) = y_0$ and the rate constant determine the exponential function completely.

The quantity described by the function $y(t) = y_0 e^{kt}$ for k > 0 has a constant doubling time of $T_2 = \frac{\ln 2}{k}$.

Exponential decay is described by functions of the form $y(t) = y_0 e^{-kt}$. The initial value of y is $y(0) = y_0$ and the rate constant k > 0 determines the rate of decay. Exponential decay is characterized by a constant relative decay rate. The constant half-life is $T_{1/2} = \frac{\ln 2}{k}$.

Example 1 (§6.9 Ex. 29). Uranium-238 (U-238) has a half-life of 4.5 billion years. Geologists find a rock containing a mixture of U-238 and lead, and determine that 85% of the original U-238 remains; the other 15% has decayed into lead. How old is the rock?

2 Basic approaches to integration

Briggs-Cochran-Gillett §7.1 pp. 511 - 514

In this section, we review some integration techniques. Here is a table of frequently used derivatives and antiderivatives:

$rac{d}{du}F(u)=f(u)$	$\int f(u) du = F(u) + C$
$\frac{d}{du}u^{n+1} = (n+1)u^n$	$\int u^n du = \frac{u^{n+1}}{n+1} + C, n \neq -1$
$rac{d}{du}\ln u=rac{1}{u}$	$\int rac{1}{u}du = \ln u + C$
$rac{d}{du}\sin u=\cos u$	$\int \cos u du = \sin u + C$
$rac{d}{du}\cos u = -\sin u$	$\int \sin u du = -\cos u + C$
$rac{d}{du} an u = \sec^2 u$	$\int \sec^2 u du = \tan u + C$
$rac{d}{du} \sec u = \sec u an u$	$\int \sec u \tan u du = \sec u + C$
$\frac{d}{du}e^u = e^u$	$\int e^u du = e^u + C$
	$\int \tan u du = \ln \sec u + C$
	$\int \sec u du = \ln \sec u + \tan u + C$
$\frac{d}{du}\sin^{-1}u = \frac{1}{\sqrt{1-u^2}}$	$\int \frac{1}{\sqrt{1-u^2}} du = \sin^{-1}u + C$
$\overline{rac{d}{du} an^{-1} u} = rac{1}{1+u^2}$	$\int \frac{1}{1+u^2} du = \tan^{-1}u + C$

Example 2 (§7.1 Ex. 27). Compute $\int \frac{2-3x}{\sqrt{1-x^2}} dx$.

Example 3 (§7.1 Ex. 30). Evaluate $\int_{2}^{4} \frac{x^{2}+2}{x-1} dx$.

Example 4 (§7.1 Ex. 34). Evaluate $\int_0^2 \frac{x}{x^2+4x+8} dx$.

Example 5 (§7.1 Ex. 61). Consider the region R bounded by the graph of $f(x) = \sqrt{x^2 + 1}$ and the x-axis on the interval [0, 2].

1. Find the volume of the solid formed when R is revolved about the x-axis.

2. Find the volume of the solid formed when R is revolved about the y-axis.

3 Integration by parts

Briggs-Cochran-Gillett §7.2 pp. 516 - 520

The technique of integration by parts comes from reversing the product rule for derivatives:

Suppose that u, v are differentiable functions. Then $\int u dv = uv - \int v du$ $\int_a^b u(x)v'(x)dx = u(x)v(x)|_a^b - \int_a^b v(x)u'(x)dx.$

The key is to figure out which function should be u and which one dv.

Example 6. Evaluate $\int \ln x \, dx$.

Example 7 (§7.2 Ex. 9). Evaluate $\int te^t dt$.

Example 8 (§7.2 Ex. 15). Evaluate $\int x^2 \ln x \, dx$.

Example 9 (§7.2 Ex. 29). Evaluate $\int x^2 \sin(2x) dx$.

Example 10 (§7.2 Ex. 34). *Evaluate* $\int_0^{\ln 2} x e^x dx$.

Example 11 (§7.2 Ex. 41). Find the volume of the solid that is generated when the region bounded by $f(x) = x \ln x$ and the x-axis on $[1, e^2]$ is revolved about the x-axis.