Professor Jennifer Balakrishnan, jbala@bu.edu

What is on today

1	Numerical integration, wrap up	1
2	Improper integrals	3

1 Numerical integration, wrap up

Briggs-Cochran-Gillett §7.7 pp. 557 - 566

An improvement over the Midpoint Rule and the Trapezoid Rule results when the graph of f is approximated with curves rather than line segments. Suppose we use three neighboring points on the curve y = f(x), say $(x_0, f(x_0)), (x_1, f(x_1)), (x_2, f(x_2))$. These three points determine a parabola, and we can find the net area under the parabola.

Simpson's Rule computes the net area in this way:

Definition 1. Suppose f is defined and integrable on [a, b] and $n \ge 2$ is an even integer. The Simpson's Rule approximation to $\int_a^b f(x)dx$ using n equally spaced subintervals on [a, b] is

$$S(n) = (f(x_0) + 4f(x_1) + 2f(x_2) + 4f(x_3) + \dots + 4f(x_{n-1}) + f(x_n))\frac{\Delta x}{3},$$

where n is an even integer, $\Delta x = (b-a)/n$, and $x_k = a + k\Delta x$, for k = 0, 1, ..., n.

Note that apart from the first and last terms, the coefficients alternate between 4 and 2; n must be an even integer for this rule to apply.

Moreover, note that we have the following relationship among the Midpoint Rule, the Trapezoid Rule, and Simpson's Rule:

$$S(2n) = \frac{2M(n) + T(n)}{3}$$

Example 2 (§7.7 Ex 39). Use Simpson's Rule with n = 4 to compute an estimate to

$$\int_0^4 (3x^5 - 8x^3) \, dx.$$

How good are these numerical approximations? Typically the Midpoint Rule is twice as accurate as the Trapezoid Rule, and Simpson's Rule is more accurate than the former two.

Theorem 3. Assume that f'' is continuous on the interval [a, b] and that k is a bound on the absolute value of the second derivative of f on [a, b]. That is $|f''(x)| \leq k$ for all x in [a, b]. Then we have the following:

$$E_M \le \frac{k(b-a)}{24} (\Delta x)^2 \qquad E_T \le \frac{k(b-a)}{12} (\Delta x)^2,$$

where E_M is the error involved in estimating the integral with the Midpoint Rule and E_T is the error involved in estimating the integral with the Trapezoid Rule.

Here is the error estimate for Simpson's Rule:

Theorem 4. Assume that $f^{(4)}$ is continuous on the interval [a, b] and that K is a bound on the absolute value of the fourth derivative of f on [a, b]. That is, $|f^{(4)}(x)| \leq K$ for all x in [a, b]. Then we have

$$E_S \le \frac{K(b-a)}{180} (\Delta x)^4.$$

Note that the error estimates for the Midpoint Rule and the Trapezoid Rule are second order and Simpson's Rule is fourth order.

2 Improper integrals

Briggs-Cochran-Gillett §7.8 pp. 570 - 578

By an *improper integral* we refer to an integral where

- the interval of integration is infinite, or
- the integrand is unbounded on the interval of integration.

DEFINITION Improper Integrals over Infinite Intervals

1. If f is continuous on $[a, \infty)$, then $\int_{a}^{\infty} f(x) dx = \lim_{b \to \infty} \int_{a}^{b} f(x) dx$. y = f(x) y = f(x) 0 = a b = 02. If f is continuous on $(-\infty, b]$, then $\int_{-\infty}^{b} f(x) dx = \lim_{a \to -\infty} \int_{a}^{b} f(x) dx$.

0 6

y = f(x)

If the limits in cases 1–3 exist, the improper integral is said to converge; otherwise, they diverge.

Example 5 (§7.8 Ex 6). Evaluate the integral $\int_0^\infty \frac{dx}{(x+1)^3}$ or state that it diverges.

Example 6 (§7.8 Ex 13). Evaluate the integral $\int_0^\infty e^{-ax} dx$, a > 0 or state that it diverges.

Example 7 (§7.8 Ex 16). Evaluate the integral $\int_0^\infty \frac{p}{\sqrt[5]{p^2+1}} dp$ or state that it diverges.

Example 8 (§7.8 Ex 30). Find the volume (if possible) of the solid of revolution given by rotating the region bounded by $f(x) = (x^2+1)^{-1/2}$ and the x-axis on the interval $[2, \infty)$ about the x-axis.

DEFINITION Improper Integrals with an Unbounded Integrand

2. Suppose f is continuous on [a, b) with
$$\lim_{x\to b^-} f(x) = \pm \infty$$
. Then, $\int_a^b f(x) dx = \lim_{x\to b^-} \int_a^b f(x) dx$.

3. Suppose f is continuous on [a, b] except at the interior point p where f is unbounded. Then, $\int_{a}^{b} f(x) dx = \int_{a}^{p} f(x) dx + \int_{p}^{b} f(x) dx$ where the integrals on the right side are evaluated as improper integrals.

If the limits in cases 1-3 exists, the improper integrals converge; otherwise they diverge.

Example 9 (§7.8 Ex 44). Evaluate the integral $\int_1^\infty \frac{dx}{\sqrt[3]{x-1}}$ or state that it diverges.