Professor Jennifer Balakrishnan, jbala@bu.edu

What is on today

1	Improper integrals wrap up	1
2	Sequences and series: an overview	1
3	Sequences	4

1 Improper integrals wrap up

Briggs-Cochran-Gillett §7.8 pp. 570 - 578

Example 1 (§7.8 Ex 44). Evaluate the integral $\int_{1}^{\infty} \frac{dx}{\sqrt[3]{x-1}}$ or state that it diverges.

2 Sequences and series: an overview

Briggs-Cochran-Gillett §8.1 pp. 596 - 604

A sequence $\{a_n\}$ is an ordered list of numbers of the form

 $\{a_1, a_2, a_3, \ldots, \}.$

A sequence may be generated by a recurrence relation of the form $a_{n+1} = f(a_n)$ for $n = 1, 2, 3, \ldots$, where a_1 is given. A sequence may also be defined with an explicit formula of the form $a_n = f(n)$, for $n = 1, 2, 3, \ldots$

Example 2 (§8.1 Ex 21). Write the first four terms of the sequence $\{a_n\}$ defined by the recurrence relation $a_{n+1} = 3a_n^2 + n + 1; a_1 = 0.$

Perhaps the most important question about a sequence is this: if you go father and farther out in the sequence $a_{100}, \ldots, a_{100000}, \ldots, a_{1000000000}, \ldots$, how do the terms of the sequence behave? Is there a limiting value, or do they grow without bound?

Definition 3. If the terms of a sequence $\{a_n\}$ approach a unique number L as n increases – that is, if a_n can be made arbitrarily close to L by taking n sufficiently large – then we say $\lim_{n\to\infty} a_n = L$ exists, and the sequence converges to L. If the terms of the sequence do not approach a single number as n increases, the sequence has no limit, and the sequence diverges.

Given a sequence $\{a_1, a_2, a_3, \ldots\}$, the sum of its terms

$$a_1 + a_2 + a_3 + \dots = \sum_{k=1}^{\infty} a_k$$

is called an infinite series. The sequence of partial sums $\{S_n\}$ associated with this series has the terms

$$S_{1} = a_{1}$$

$$S_{2} = a_{1} + a_{2}$$

$$S_{3} = a_{1} + a_{2} + a_{3}$$

$$\vdots$$

$$S_{n} = a_{1} + a_{2} + a_{3} + \dots + a_{n} = \sum_{k=1}^{n} a_{k}, \text{ for } n = 1, 2, 3, \dots$$

If the sequence of partial sums $\{S_n\}$ has a limit L, the infinite series converges to that limit, and we write

$$\sum_{k=1}^{\infty} a_k = \lim_{n \to \infty} \sum_{k=1}^n a_k = \lim_{n \to \infty} S_n = L.$$

If the sequence of partial sums diverges, the infinite series also diverges.

Example 4 (§8.1 Ex 61). For the infinite series $4 + 0.9 + 0.09 + 0.009 + \cdots$, find the first four terms of the sequence of partial sums. Then make a conjecture about the value of the infinite series.

Example 5 (§8.1 Ex 73). Consider the infinite series $\sum_{k=1}^{\infty} 3^{-k}$. Write out the first four terms of the sequence of partial sums. Estimate the limit of $\{S_n\}$ or state that it does not exist.

Example 6 (§8.1 Ex 74). Consider the infinite series $\sum_{k=1}^{\infty} k$. Write out the first four terms of the sequence of partial sums. Estimate the limit of $\{S_n\}$ or state that it does not exist.

3 Sequences

Briggs-Cochran-Gillett §8.2 pp. 607 - 611

A fundamental question about sequences concerns the behavior of the terms as we go out farther and farther in the sequence. Below we state a few theorems regarding limits of sequences:

Theorem 7 (Limits of sequences from limits of functions). Suppose f is a function such that $f(n) = a_n$ for all positive integers n. If $\lim_{x\to\infty} f(x) = L$, then the limit of the sequence $\{a_n\}$ is also L.

Theorem 8 (Limit laws for sequences). Assume that the sequences $\{a_n\}$ and $\{b_n\}$ have limits A and B, respectively. Then

- 1. $\lim_{n \to \infty} (a_n \pm b_n) = A \pm B$
- 2. $\lim_{n\to\infty} ca_n = cA$, where c is a real number
- 3. $\lim_{n\to\infty} a_n b_n = AB$
- 4. $\lim_{n\to\infty} \frac{a_n}{b_n} = \frac{A}{B}$, provided $B \neq 0$

Example 9 (§8.2 Ex 10). Find the limit of the sequence $\{\frac{n^{12}}{3n^{12}+4}\}$ or determine that the limit does not exist.

Example 10 (§8.2 Ex 22). Find the limit of the sequence $\{(1 + \frac{4}{n})^{3n}\}$ or determine that the limit does not exist.