Professor Jennifer Balakrishnan, jbala@bu.edu

What is on today

1 More on sequences

1

1 More on sequences

Briggs-Cochran-Gillett §8.2 pp. 607 - 611

Theorem 1 (Squeeze Theorem for sequences). Let $\{a_n\}, \{b_n\}, and \{c_n\}$ be sequences with $a_n \leq b_n \leq c_n$ for all integers n greater than some index N. If $\lim_{n\to\infty} a_n = \lim_{n\to\infty} c_n = L$, then $\lim_{n\to\infty} b_n = L$.

Example 2 (§8.2 Ex 32). Find the limit of the sequence $\{\frac{(-1)^n}{n}\}$ or determine that the limit does not exist.

We now introduce some terminology for sequences:

- $\{a_n\}$ is increasing if $a_{n+1} > a_n$; for example, $\{0, 1, 2, 3, ...\}$,
- $\{a_n\}$ is nondecreasing if $a_{n+1} \ge a_n$; for example, $\{1, 1, 2, 2, 3, 3, ...\}$.
- $\{a_n\}$ is decreasing if $a_{n+1} < a_n$; for example, $\{2, 1, 0, -1, ...\}$.
- $\{a_n\}$ is nonincreasing if $a_{n+1} \leq a_n$; for example, $\{0, -1, -1, -2, -2, -3, -3, \ldots\}$.
- $\{a_n\}$ is monotonic if it is either nonincreasing or nondecreasing (it moves in one direction).
- $\{a_n\}$ is bounded if there is a number M such that $|a_n| \leq M$, for all relevant values of n

Geometric sequences have the property that each term is obtained by multiplying the previous term by a fixed constant, called the ratio. They have the form $\{ar^n\}$, where the ratio r and $a \neq 0$ are real numbers.

Theorem 3. Let r be a real number. Then

$$\lim_{n \to \infty} r^n = \begin{cases} 0 & \text{if } |r| < 1\\ 1 & \text{if } r = 1\\ \text{does not exist} & \text{if } r \le -1 \text{ or } r > 1. \end{cases}$$

If r > 0, then $\{r^n\}$ is a monotonic sequence. If r < 0, then $\{r^n\}$ oscillates.

Example 4 (§8.2 Ex 50). Determine whether the sequence $\{2^{n+1}3^{-n}\}$ converges or diverges, and state whether it is monotonic or whether it oscillates. Give the limit if the sequence converges.

Consider the following bounded monotonic sequences:

Indeed, it is a theorem that all such sequences converge:

Theorem 5. A bounded monotonic sequence converges.

We will review for Midterm 1 for the rest of the lecture.