
MA 124 (Calculus II) Lecture 12: March 5, 2019 Section A3

Professor Jennifer Balakrishnan, jbala@bu.edu

What is on today

1 Sequences 1

2 Infinite series 1

1 Sequences

Briggs-Cochran-Gillett §8.2 pp. 607 - 611

We can use earlier results on growth rates of functions (§4.7) to compare growth rates of
sequences:

Theorem 1 (Growth Rates of Sequences). The following sequences are ordered according
to increasing growth rates as n → ∞; that is, if {an} appears before {bn} in the list, then
limn→∞

an
bn

= 0 and limn→∞
bn
an

=∞:

{(lnn)q} � {np} � {np(lnn)r} � {np+s} � {bn} � {n!} � {nn}.

The order applies for positive real numbers p, q, r, s and b > 1.

Example 2 (§8.2 Ex 67). Use the previous theorem to find the limit of the sequence
{
n1000

2n

}
or state that it diverges.

2 Infinite series

Briggs-Cochran-Gillett §8.3 pp. 619 - 623

We will focus our attention on two types of infinite series: geometric series and telescoping
series.
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As a preliminary step to geometric series, we discuss geometric sums. A geometric sum
with n terms has the form

Sn = a + ar + ar2 + · · ·+ arn−1 =
n−1∑
k=0

ark,

where a 6= 0 and r are real numbers. r is called the ratio of the sum. We can compute the
value of the geometric sum

Sn = a + ar + ar2 + · · ·+ arn−1 (1)

by doing the following: multiply both sides of (1) by r:

rSn = ar + ar2 + · · ·+ arn

and consider the difference of the above with (1):

Sn − rSn = a− arn.

Then solving for Sn gives that

Sn = a
1− rn

1− r
.

Example 3 (§8.3 Ex 7). Compute
∑8

k=0 3k.

Example 4 (§8.3 Ex 15). Compute
∑20

k=0(−1)k.

Now we consider geometric series. The geometric sums Sn =
∑n−1

k=0 ar
k form the sequence

of partial sums for the geometric series
∑∞

k=0 ar
k. The value of the geometric series is the

limit of its sequence of partial sums. Thus we have

∞∑
k=0

ark = lim
n→∞

n−1∑
k=0

ark = lim
n→∞

a
1− rn

1− r
.
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Then using a theorem from the last class, that

lim
n→∞

rn =


0 if |r| < 1

1 if r = 1

does not exist if r ≤ −1 or r > 1,

we find that

Theorem 5. Let a 6= 0 and r be real numbers. If |r| < 1, then
∑∞

k=0 ar
k = a

1−r . If |r| ≥ 1,
then the series diverges.

Example 6 (§8.3 Ex 19, 24, 26, 40). Evaluate each geometric series or state that it diverges.

1.
∑∞

k=0

(
1
4

)k
.

2. 1 + 1
π

+ 1
π2 + 1

π3 + · · ·

3.
∑∞

m=2
5
2m

.

4.
∑∞

k=1 3
(
−1

8

)3k
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Example 7 (§8.3 Ex 46). Write the repeating decimal 0.27 = .272727 · · · as a geometric
series and then as a rational number.

We were able to compute geometric series by finding a formula for the sequence of partial
sums and then evaluating the limit of the sequence. Not many infinite series can be computed
in this way. However, for another class of series, called telescoping series, we can also do
something similar. Here is an example.

Example 8 (§8.3 Ex 56). Consider the telescoping series
∑∞

k=1

(
1

k+2
− 1

k+3

)
. Find a formula

for the nth term of the sequence of partial sums Sn. Then evaluate limn→∞ Sn to obtain the
value of the series or state that the series diverges.
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