MA 124 (Calculus I1) Lecture 16: March 26, 2019 Section A3

Professor Jennifer Balakrishnan, jbala@bu.edu

What is on today

1 The comparison, limit comparison, ratio, and root tests: wrap up 1

2 Alternating series 3

1 The comparison, limit comparison, ratio, and root
tests: wrap up

Briggs-Cochran-Gillett §8.5 pp. 641 - 647

Occasionally a series arises for which the Comparison Test, Limit Comparison Test, and
Ratio Tests are difficult to apply. In these situations, we try the Root Test:

Theorem 1 (Root Test). Let > ay be an infinite series with nonnegative terms and let
p = limg_ . ¥ay.

1. If 0 < p < 1, the series converges.
2. If p>1 (including p = 00), the series diverges.
3. If p =1, the test is inconclusive.

Example 2 (§8.5 Ex 20, 25). Use the Root Test to determine whether the following series
converge.
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Example 3 (§8.5 Ex 44, 47, 52, 57, 58). Use the test of your choice to determine whether
the following series converge.
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2 Alternating series

Briggs-Cochran-Gillett §8.6 pp. 649 - 652

The previous tests focused on infinite series with positive terms. We shift our attention to
studying series with terms that have strictly alternating signs, as in the series
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The factor (—1)**! (or possibly (—1)*) provides the alternating signs.
Theorem 4 (Alternating Series Test). The alternating series >_(—1)¥*1a;, converges if
1. the terms of the series are nonincreasing in magnitude (0 < axr1 < ay, for k greater
than some index N ) and
2. limy_,ca = 0.
What does the Alternating Series Test tell us about the alternating harmonic series?
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Theorem 5. The alternating harmonic series ) ;" | ~—— = l—5+3z—5+z—--- converges.

For series of positive terms, limy_,, ar = 0 does NOT imply convergence. For alter-
nating series with nonincreasing terms, limy .., ax = 0 DOES imply convergence.

Example 6 (§8.6 Ex 16, 20, 24). Determine whether the following series converge.
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