Professor Jennifer Balakrishnan, jbala@bu.edu

What is on today

1	The comparison, limit comparison, ratio, and root tests: wrap up	1
2	Alternating series	3

1 The comparison, limit comparison, ratio, and root tests: wrap up

Briggs-Cochran-Gillett §8.5 pp. 641 - 647

Occasionally a series arises for which the Comparison Test, Limit Comparison Test, and Ratio Tests are difficult to apply. In these situations, we try the Root Test:

Theorem 1 (Root Test). Let $\sum a_k$ be an infinite series with nonnegative terms and let $\rho = \lim_{k \to \infty} \sqrt[k]{a_k}$.

- 1. If $0 \le \rho < 1$, the series converges.
- 2. If $\rho > 1$ (including $\rho = \infty$), the series diverges.
- 3. If $\rho = 1$, the test is inconclusive.

Example 2 (§8.5 Ex 20, 25). Use the Root Test to determine whether the following series converge.

1. $\sum_{k=1}^{\infty} \left(\frac{2k}{k+1}\right)^k$

2.
$$1 + \left(\frac{1}{2}\right)^2 + \left(\frac{1}{3}\right)^3 + \left(\frac{1}{4}\right)^4 + \cdots$$

Example 3 (§8.5 Ex 44, 47, 52, 57, 58). Use the test of your choice to determine whether the following series converge.

1.
$$\sum_{k=1}^{\infty} \frac{\sin^2 k}{k^2}$$

2.
$$\sum_{k=1}^{\infty} \frac{k^2 + 2k + 1}{3k^2 + 1}$$

3.
$$\sum_{k=1}^{\infty} \frac{(k!)^3}{(3k)!}$$

4.
$$\sum_{k=1}^{\infty} \frac{k^8}{k^{11}+3}$$

5.
$$\sum_{k=1}^{\infty} \frac{1}{(1+p)^k}, p > 0$$

2 Alternating series

Briggs-Cochran-Gillett §8.6 pp. 649 - 652

The previous tests focused on infinite series with positive terms. We shift our attention to studying series with terms that have strictly alternating signs, as in the series

$$\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \frac{1}{7} - \frac{1}{8} + \cdots$$

The factor $(-1)^{k+1}$ (or possibly $(-1)^k$) provides the alternating signs.

Theorem 4 (Alternating Series Test). The alternating series $\sum_{k=1}^{k-1} (-1)^{k+1} a_k$ converges if

- 1. the terms of the series are nonincreasing in magnitude $(0 < a_{k+1} \leq a_k)$, for k greater than some index N and
- 2. $\lim_{k\to\infty} a_k = 0.$

What does the Alternating Series Test tell us about the alternating harmonic series?

Theorem 5. The alternating harmonic series $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \cdots$ converges.

For series of **positive** terms, $\lim_{k\to\infty} a_k = 0$ does **NOT** imply convergence. For **alternating series with nonincreasing** terms, $\lim_{k\to\infty} a_k = 0$ **DOES** imply convergence.

Example 6 (§8.6 Ex 16, 20, 24). Determine whether the following series converge.

- 1. $\sum_{k=0}^{\infty} \frac{(-1)^k}{k^2+10}$
- 2. $\sum_{k=0}^{\infty} \left(-\frac{1}{5}\right)^k$

 $\mathcal{J}. \ \sum_{k=2}^{\infty} \frac{(-1)^k}{k \ln^2 k}$