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Professor Jennifer Balakrishnan, jbala@bu.edu

What is on today

1 Approximating functions with polynomials 1

1 Approximating functions with polynomials

Briggs-Cochran-Gillett §9.1 pp. 661 - 667

Guess the function!
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Why does it look like the graph of y = sinx?

(y = sinx is in red)

This is the sort of thing we will investigate today. First, a power series is an infinite
series of the form

∞∑
k=0

ckx
k = c0 + c1x+ c2x

2 + · · ·+ cnx
n + · · · ,

or more generally,
∞∑
k=0

ck(x− a)k = c0 + c1(x− a) + · · ·+ cn(x− a)n + · · · ,

where the center of the series a and the coefficients ck are constants. Another way of thinking
about this is that a power series is built up from polynomials of increasing degree:
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c0 + c1x

c0 + c1x+ c2x
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...

c0 + c1x+ c2x
2 + · · · cnxn =
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ckx
k

...

c0 + c1x+ c2x
2 + · · · cnxn + · · · =
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ckx
k.
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With this perspective, we begin our exploration of power series by using polynomials to
approximate functions.

Earlier, we learned that if a function f is differentiable at a point a, then it can be
approximated near a by its tangent line, which is the linear approximation to f at the point
a. The linear approximation at a is given by

y = f(a) + f ′(a)(x− a).

Because the linear approximation is a first-degree polynomial, we name it p1:

p1(x) := f(a) + f ′(a)(x− a).

It matches f in value and in slope at a:

p1(a) = f(a), p′1(a) = f ′(a).

Linear approximation works well if f has a fairly constant slope near a. However, if f has
a lot of curvature near a, then the tangent line may not provide an accurate approximation.
To remedy this situation, we create a quadratic approximating polynomial by adding one
new term to the linear polynomial. Denoting this new polynomial p2, we let

p2(x) := f(a) + f ′(a)(x− a) + c2(x− a)2 = p1(x) + c2(x− a)2.

To determine c2, we require that p2 agree with f in value, slope, and concavity at a:
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By construction, it already agrees with f in value and slope at a. Differentiating p2(x) twice
and substituting x = a yields

p′′2(a) = 2c2 = f ′′(a).

Thus it follows that c2 = 1
2
f ′′(a) and

p2(x) = f(a) + f ′(a)(x− a) +
1

2
f ′′(a)(x− a)2.

Example 1 (§9.1 Ex 8, 10).

(a) Find the linear approximating polynomial for the following functions centered at the
given point a.

(b) Find the quadratic approximating polynomial for the following functions centered at the
given point a.

(c) Use the polynomials obtained in the first two parts to approximate the given quantity.

1. f(x) = 1
x
, a = 1, approximate 1

1.05

2. f(x) =
√
x, a = 4, approximate

√
3.9

Assume that f and its first n derivatives exist at a. Our goal is to find an nth-degree
polynomial that approximates the values of f near a. The first step is to use p2 to obtain a
cubic polynomial p3 of the form

p3(x) = p2(x) + c3(x− a)3

that satisfies the four matching conditions

p3(a) = f(a), p′3(a) = f ′(a), p′′3(a) = f ′′(a), p′′′3 (a) = f ′′′(a).
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Because p3 is built using p2, the first three conditions are met. The last condition is used to
determine c3. Differentiating as before, we find p′′′3 (x) = 3 · 2c3 = 3!c3, or in other words,

c3 =
f ′′′(a)

3!
.

Continuing in this way, building each new polynomial on the previous polynomial, we
construct the Taylor polynomials:

Definition 2. Let f be a function with f ′, f ′′, . . . and f (n) defined at a. The nth order Taylor
polynomial for f with its center at a, denoted pn, has the property that it matches f in value,
slope, and all derivatives up to the nth derivative at a. That is,

pn(a) = f(a), p′n(a) = f ′(a), . . . , p(n)n (a) = f (n)(a).

The nth-order Taylor polynomial centered at a is

pn(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2 + · · ·+ f (n)(a)

n!
(x− a)n.

Example 3 (§9.1 Ex 15). Let f(x) = cosx. Find the nth-order Taylor polynomials of f(x)
centered at 0 for n = 0, 1, 2.

Example 4 (§9.1 Ex 32). Let f(x) = cosx and a = π/6. Find the nth-order Taylor
polynomials for f(x) centered at a, for n = 0, 1, 2.
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