1

Professor Jennifer Balakrishnan, jbala@bu.edu

What is on today

1 Approximating functions with polynomials

1 Approximating functions with polynomials

Briggs-Cochran-Gillett §9.1 pp. 665 - 671

Today we look at approximations obtained with Taylor polynomials and give estimates on the remainder in a Taylor polynomial.

Example 1. Find the Taylor polynomials of order n = 0, 1, 2, 3 for $f(x) = e^x$ centered at 0. Use the polynomials to approximate $e^{0.1}$. Find the absolute errors $|f(x) - p_n(x)|$ in the approximations. (Hint: $e^{0.1} \approx 1.1051709$.)

Example 2. Use a Taylor polynomial of order 2 to approximate $\sqrt{18}$.

Taylor polynomials provide good approximations to functions near a specific point. But how accurate are the approximations? To answer this, we define the **remainder** in a Taylor polynomial: **Definition 3.** Let p_n be the Taylor polynomial of order n for f. The remainder in using p_n to approximate f at the point x is $R_n(x) = f(x) - p_n(x)$.

We have the following result quantifying the remainder:

Theorem 4 (Taylor's theorem). Let f have continuous derivatives up to $f^{(n+1)}$ on an open interval I containing a. For all x in I, we have $f(x) = p_n(x) + R_n(x)$, where p_n is the nth-order Taylor polynomial for f centered at a and the remainder is

$$R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1},$$

for some point c between x and a.

Example 5 (§9.1 Ex 51, 52). Find the remainder R_n for the nth order Taylor polynomial centered at a for the given functions. Express the result for a general value of n.

1.
$$f(x) = e^{-x}, a = 0.$$

2.
$$f(x) = \cos x, a = \frac{\pi}{2}$$
.

The difficulty in estimating the remainder is finding a bound for $|f^{(n+1)}(c)|$. Assuming this can be done, we have the following theorem:

Theorem 6 (Estimate of the remainder). Let n be a fixed positive integer. Suppose there exists a number M such that $|f^{(n+1)}(c)| \leq M$, for all c between a and x, inclusive. The remainder in the nth-order Taylor polynomial for f centered at a satisfies

$$|R_n(x)| = |f(x) - p_n(x)| \le M \frac{|x - a|^{n+1}}{(n+1)!}.$$

Example 7 (§9.1 Ex 57). Use the remainder to find a bound on the error in approximating $e^{0.25}$ with the 4th-order Taylor polynomial centered at 0.

Example 8 (§9.1 Ex 66). Consider the approximation $\sqrt{1+x} \approx 1 + \frac{x}{2}$ on [-0.1, 0.1]. Use the remainder to find a bound on the error on the given interval.

Example 9 (§9.1 Ex 68). What is the minimum order of the Taylor polynomial required to approximate $\sin 0.2$ with an absolute error no greater than 10^{-3} ?