Professor Jennifer Balakrishnan, jbala@bu.edu

What is on today

1 Properties of power series

1

1 Properties of power series

Briggs-Cochran-Gillett §9.2 pp. 675 - 679

Example 1 (§9.2 Ex 38). Use the power series representation

$$f(x) = \ln(1-x) = -\sum_{k=1}^{\infty} \frac{x^k}{k}$$

for $-1 \le x < 1$ to find the power series for the function $f(x^3) = \ln(1-x^3)$ centered at 0. Give the interval of convergence of the new series.

Theorem 2 (Combining power series). Suppose the power series $\sum c_k x^k$ and $\sum d_k x^k$ converge to f(x) and g(x), respectively, on an interval I.

- 1. Sum and difference: The power series $\sum (c_k \pm d_k) x^k$ converges to $f(x) \pm g(x)$ on I.
- 2. Multiplication by a power: Suppose m is an integer such that $k + m \ge 0$ for all terms of the power series $x^m \sum c_k x^k = \sum c_k x^{k+m}$. This series converges to $x^m f(x)$ for all $x \ne 0$ in I. When x = 0, the series converges to $\lim_{x\to 0} x^m f(x)$.
- 3. Composition: If $h(x) = bx^m$, where m is a positive integer and b is a nonzero real number, the power series $\sum c_k (h(x))^k$ converges to the composite function f(h(x)), for all x such that h(x) is in I.

Theorem 3 (Differentiating and integrating power series). Suppose the power series $\sum c_k (x-a)^k$ converges for |x-a| < R and defines a function f on that interval.

- 1. Then f is differentiable (which implies continuous) for |x-a| < R, and f' is found by differentiating the power series for f term by term; that is, $f'(x) = \sum kc_k(x-a)^{k-1}$, for |x-a| < R.
- 2. The indefinite integral of f is found by integrating the power series for f term by term; that is, $\int f(x)dx = \sum c_k \frac{(x-a)^{k+1}}{k+1} + C$, for |x-a| < R, where C is an arbitrary constant.

Example 4 (§9.2 Ex 42, 44, 46). Find the power series representation for g centered at 0 by differentiating or integrating the power series for f (perhaps more than once). Give the interval of convergence for the resulting series.

1. $g(x) = \frac{1}{(1-x)^3}$ using $f(x) = \frac{1}{1-x}$

2.
$$g(x) = \frac{x}{(1+x^2)^2}$$
 using $f(x) = \frac{1}{1+x^2}$

3.
$$g(x) = \ln(1+x^2)$$
 using $f(x) = \frac{x}{1+x^2}$

Example 5 (§9.2 Ex 48, 50). Find power series representations centered at 0 for the following functions using known power series. Give the interval of convergence for the resulting series.

1.
$$f(x) = \frac{1}{1-x^4}$$

2.
$$f(x) = \ln \sqrt{1 - x^2}$$

Example 6 (§9.2 Ex 64). Find the function represented by the series $\sum_{k=1}^{\infty} \frac{x^{2k}}{4k}$ and find the interval of convergence of the series.