Professor Jennifer Balakrishnan, jbala@bu.edu

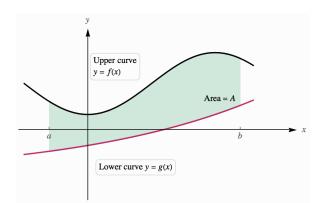
What is on today

1	Regions between curves	1
2	Volume by slicing	3

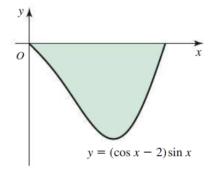
1 Regions between curves

Briggs-Cochran-Gillett-Schulz §6.2 pp. 412 - 420

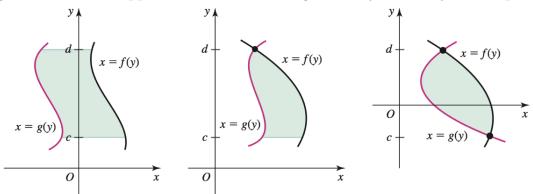
Definition 1. Suppose that f and g are continuous functions with $f(x) \ge g(x)$ on the interval [a, b]. The area of the region bounded by the graphs of f and g on [a, b] is $A = \int_a^b (f(x) - g(x)) dx$.



Example 2 (§6.2 Ex. 14). Determine the area of the shaded region:



There are occasions when it is convenient to reverse the roles of x and y. Consider the regions shown below that are bounded by the graphs of x = f(y) and x = g(y), where $f(y) \ge g(y)$, for $c \le y \le d$ (which implies that the graph of f lies to the right of the graph of g). The lower and upper boundaries of the regions are y = c and y = d, respectively.

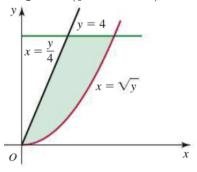


In cases like these, we treat y as the independent variable and divide the interval [c, d] into n subintervals of width $\Delta y = (d - c)/n$. We compute the Riemann sum and take the limit to obtain the following:

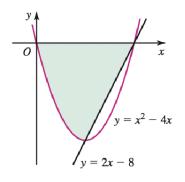
Definition 3. Suppose that f and g are continuous functions with $f(y) \ge g(y)$ on the interval [c, d]. The area of the region bounded by x = f(y) and x = g(y) on [c, d] is

$$A = \int_{c}^{d} (f(y) - g(y)) dy.$$

Example 4 (§6.2 Ex. 20). Determine the area of the following shaded region:



Example 5 (§6.2 Ex. 32). Express the area of the shaded region in terms of (a) one or more integrals with respect to x and (b) and one or more integrals with respect to y.



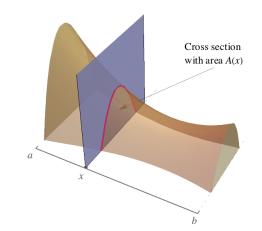
Example 6 (§6.2 Ex. 42). Find the area of the region bounded by $y = 24\sqrt{x}$ and $y = 3x^2$

2 Volume by slicing

Briggs-Cochran-Gillett-Schulz §6.3 pp. 425 - 429

Consider a solid object that extends in the x-direction from x = a to x = b. Imagine cutting through the solid, perpendicular to the x-axis at a particular point x, and suppose the area of the cross section is given by a function A.

We give a formula to calculate the volume of this object, which is the basis of other volume formulas in this section:

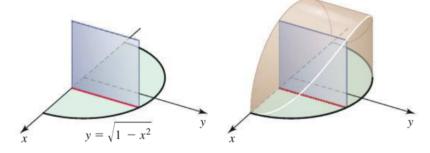


General slicing method

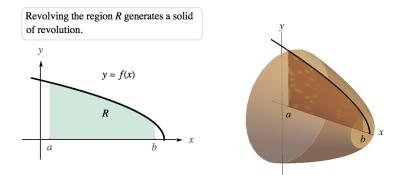
Suppose a solid object extends from x = a to x = b and the cross section of the solid perpendicular to the x-axis has an area given by a function A that is integrable on [a, b]. The volume of the solid is

$$V = \int_{a}^{b} A(x) dx.$$

Example 7 (§6.3 Ex. 11). Use the slicing method to calculate the volume of the solid whose base is the region bounded by the semicircle $y = \sqrt{1-x^2}$ and the x-axis, and whose cross sections through the solid perpendicular to the x-axis are squares.



We can also consider a specific type of solid known as a **solid of revolution**. Suppose f is a continuous function with $f(x) \ge 0$ on [a, b]. Let R be the region bounded by the graph of f, the x-axis, the the lines x = a and x = b. Now rotate R around the x-axis. As R revolves once about the x-axis, it sweeps out a 3-dimensional solid of revolution.



We find the volume of this solid using the general slicing method. Here the cross-sectional area function has a special form since all cross-sections perpendicular to the x-axis are circular disks with radius f(x). Thus the area of a cross-section is

$$A(x) = \pi(f(x))^2.$$

Here we summarize what just happened, which we call the disk method:

Disk method about the *x*-axis

Let f be continuous with $f(x) \ge 0$ on [a, b]. If the region R bounded by the graph of f, the x-axis, and the lines x = a and x = b is revolved about the x-axis, the volume of the resulting solid of revolution is

$$V = \int_{a}^{b} \pi(f(x))^2 dx.$$

Example 8 (§6.3 Ex. 18). Let R be the region bounded by the curves y = 2-2x, y = 0, x = 0. Use the disk method to find the volume of the solid generated when R is revolved about the x-axis. (What shape is this? Can you match this with a volume formula that you know?)

