Professor Jennifer Balakrishnan, jbala@bu.edu

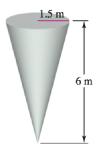
What is on today

1	Work wrap-up	1
2	Exponential models	2
3	Basic approaches to integration	3

1 Work wrap-up

Briggs-Cochran-Gillett-Schulz §6.7 pp. 465 - 471

Example 1 (§6.7 Ex. 39). A water tank is shaped like an inverted cone with height 6m and base radius 1.5 m (see figure).



- 1. If the tank is full, how much work is required to pump the water to the top of the tank and out of the tank?
- 2. Is it true that it takes half as much work to pump the water out of the tank when it is filled to half its depth as when it is full? Explain.

Example 2 (§6.7 Ex. 31). A 30-m-long chain hangs vertically from a cylinder attached to a winch. Assume there is no friction in the system and the chain has a density of 5 kg/m.

1. How much work is required to wind the entire chain onto the cylinder using the winch?

2. How much work is required to wind the chain onto the cylinder if a 50-kg block is attached to the end of the chain?

2 Exponential models

Briggs-Cochran-Gillett-Schulz §7.2 pp. 492 - 498

Exponential functions are used to model problems in a number of fields: finance, medicine, ecology, biology, physics, to name a few. In this section, we study exponential models.

Exponential growth functions have the form

$$y(t) = Ce^{kt},$$

where C is a constant and the rate constant k is positive. If we start with such a function and take its derivative, we find

$$y'(t) = kCe^{kt} = ky.$$

We see that the growth rate y'(t) is proportional to the value of the function. Another interesting quantity to consider is the relative growth rate y'(t)/y(t), which is constant for exponential functions. Note that the initial value y(0) = C and the rate constant determine the exponential function completely.

The quantity described by the function $y(t) = y_0 e^{kt}$ for k > 0 has a constant doubling time of $T_2 = \frac{\ln 2}{k}$.

Exponential decay is described by functions of the form $y(t) = y_0 e^{-kt}$. The initial value of y is $y(0) = y_0$ and the rate constant k > 0 determines the rate of decay. Exponential decay is characterized by a constant relative decay rate. The constant half-life is $T_{1/2} = \frac{\ln 2}{k}$.

Example 3 (§7.2 Ex. 28). A drug is eliminated from the body at a rate of 15% per hour. After how many hours does the amount of drug reach 10% of the initial dose?

Example 4 (§7.2 Ex. 35). Uranium-238 (U-238) has a half-life of 4.5 billion years. Geologists find a rock containing a mixture of U-238 and lead, and determine that 85% of the original U-238 remains; the other 15% has decayed into lead. How old is the rock?

3 Basic approaches to integration

Briggs-Cochran-Gillett-Schulz §8.1 pp. 520 - 523

In this section, we review some integration techniques. Here is a table of frequently used derivatives and antiderivatives:

$\frac{d}{du}F(u) = f(u)$	$\int f(u) du = F(u) + C$
$\frac{d}{du}u^{n+1} = (n+1)u^n$	$\int u^n du = \frac{u^{n+1}}{n+1} + C, n \neq -1$
$rac{d}{du}\ln u = rac{1}{u}$	$\int rac{1}{u} du = \ln u + C$
$rac{d}{du}\sin u=\cos u$	$\int \cos u du = \sin u + C$
$\frac{d}{du}\cos u = -\sin u$	$\int \sin u du = -\cos u + C$
$\frac{d}{du}\tan u = \sec^2 u$	$\int \sec^2 u du = \tan u + C$
$\frac{d}{du}\sec u = \sec u \tan u$	$\int \sec u \tan u du = \sec u + C$
$rac{d}{du}e^u=e^u$	$\int e^udu=e^u+C$
	$\int \tan u du = \ln \sec u + C$
	$\int \sec u du = \ln \sec u + \tan u + C$
$\frac{d}{du}\sin^{-1}u = \frac{1}{\sqrt{1-u^2}}$	$\int \frac{1}{\sqrt{1-u^2}} du = \sin^{-1}u + C$
$\frac{d}{du}\tan^{-1}u = \frac{1}{1+u^2}$	$\int \frac{1}{1+u^2} du = \tan^{-1}u + C$

Example 5 (§8.1 Ex. 27). Compute $\int \frac{2-3x}{\sqrt{1-x^2}} dx$.

Example 6 (§8.1 Ex. 32). Evaluate $\int_0^2 \frac{x}{x^2+4x+8} dx$.

Example 7 (§8.1 Ex. 34). Evaluate $\int_{2}^{4} \frac{x^{2}+2}{x-1} dx$.

Example 8 (§8.1 Ex. 75). Consider the region R bounded by the graph of $f(x) = \sqrt{x^2 + 1}$ and the x-axis on the interval [0, 2].

- 1. Find the volume of the solid formed when R is revolved about the x-axis.
- 2. Find the volume of the solid formed when R is revolved about the y-axis.