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1 Sequences and infinite series: an introduction

Briggs-Cochran-Gillett-Schulz §10.1 pp. 639 - 647

A sequence {an} is an ordered list of numbers of the form

{a1, a2, a3, . . . , }.

Each number in the sequence is called a term of the sequence. A sequence may be generated
by a recurrence relation of the form an+1 = f(an) for n = 1, 2, 3, . . ., where a1 is given.
A sequence may also be defined with an explicit formula of the form an = f(n), for n =
1, 2, 3, . . . .

Example 1 (§10.1 Ex. 24). Write the first four terms of the sequence {an} defined by the
recurrence relation an+1 = a2n − 1; a1 = 1.

Perhaps the most important question about a sequence is this: if you go father and farther
out in the sequence a100, . . . , a100000, . . . , a10000000000, . . . , how do the terms of the sequence
behave? Is there a limiting value, or do they grow without bound?

Definition 2. If the terms of a sequence {an} approach a unique number L as n increases
– that is, if an can be made arbitrarily close to L by taking n sufficiently large – then we
say limn→∞ an = L exists, and the sequence converges to L. If the terms of the sequence do
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not approach a single number as n increases, the sequence has no limit, and the sequence
diverges.

Given a sequence {a1, a2, a3, . . .}, the sum of its terms

a1 + a2 + a3 + · · · =
∞∑
k=1

ak

is called an infinite series. The sequence of partial sums {Sn} associated with this series has
the terms

S1 = a1

S2 = a1 + a2

S3 = a1 + a2 + a3
...

Sn = a1 + a2 + a3 + · · ·+ an =
n∑

k=1

ak, for n = 1, 2, 3, . . .

If the sequence of partial sums {Sn} has a limit L, the infinite series converges to that limit,
and we write

∞∑
k=1

ak = lim
n→∞

n∑
k=1

ak = lim
n→∞

Sn = L.

If the sequence of partial sums diverges, the infinite series also diverges.

Example 3 (§10.1 Ex. 63). For the infinite series 4 + 0.9 + 0.09 + 0.009 + · · · , find the first
four terms of the sequence of partial sums. Then make a conjecture about the value of the
infinite series.
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Example 4 (§10.1 Ex. 68). Consider the infinite series
∑∞

k=1 2−k.

1. Write out the first four terms of the sequence of partial sums.

2. Find a formula for the nth partial sum Sn of the infinite series. Use this formula to
find the next four partial sums S5, S6, S7, S8.

3. Make a conjecture for the values of the series (the limit of {Sn}) or state that it does
not exist.

2 Sequences

Briggs-Cochran-Gillett-Schulz §10.2 pp. 650 - 657

A fundamental question about sequences concerns the behavior of the terms as we go out
farther and farther in the sequence. Below we state a few theorems regarding limits of
sequences:

Theorem 5 (Limits of sequences from limits of functions). Suppose f is a function such
that f(n) = an for all positive integers n. If limx→∞ f(x) = L, then the limit of the sequence
{an} is also L.

Theorem 6 (Limit laws for sequences). Assume that the sequences {an} and {bn} have
limits A and B, respectively. Then

1. limn→∞(an ± bn) = A±B

2. limn→∞ can = cA, where c is a real number

3. limn→∞ anbn = AB
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4. limn→∞
an
bn

= A
B

, provided B 6= 0

Example 7 (§10.2 Ex. 14). Find the limit of the sequence { n12

3n12+4
} or determine that the

limit does not exist.

Example 8 (§10.2 Ex. 20). Find the limit of the sequence {ln(n3 + 1)− ln(3n3 + 10n)} or
determine that the limit does not exist.

We now introduce some terminology for sequences:

• {an} is increasing if an+1 > an; for example, {0, 1, 2, 3, . . .},

• {an} is nondecreasing if an+1 ≥ an; for example, {1, 1, 2, 2, 3, 3, . . .}.

• {an} is decreasing if an+1 < an; for example, {2, 1, 0,−1, . . .}.

• {an} is nonincreasing if an+1 ≤ an; for example, {0,−1,−1,−2,−2,−3,−3, . . .}.

• {an} is monotonic if it is either nonincreasing or nondecreasing (it moves in one direc-
tion).

• {an} is bounded if there is a number M such that |an| ≤ M , for all relevant values of
n
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Geometric sequences have the property that each term is obtained by multiplying the
previous term by a fixed constant, called the ratio. They have the form {arn}, where the
ratio r and a 6= 0 are real numbers.

Theorem 9. Let r be a real number. Then

lim
n→∞

rn =


0 if |r| < 1

1 if r = 1

does not exist if r ≤ −1 or r > 1.

If r > 0, then {rn} is a monotonic sequence. If r < 0, then {rn} oscillates.

Theorem 10 (Squeeze Theorem for sequences). Let {an}, {bn}, and {cn} be sequences with
an ≤ bn ≤ cn for all integers n greater than some index N . If limn→∞ an = limn→∞ cn = L,
then limn→∞ bn = L.

Example 11 (§10.2 Ex. 56). Find the limit of the sequence { (−1)
n

n
} or determine that the

sequence diverges.

Example 12 (§10.2 Ex. 65). Find the limit of the sequence { cosn
n
} or determine that the

sequence diverges.
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Consider the following bounded monotonic sequences:

Indeed, it is a theorem that all such sequences converge:

Theorem 13. A bounded monotonic sequence converges.

We can use earlier results on growth rates of functions (§4.7) to compare growth rates of
sequences:

Theorem 14 (Growth Rates of Sequences). The following sequences are ordered according
to increasing growth rates as n → ∞; that is, if {an} appears before {bn} in the list, then
limn→∞

an
bn

= 0 and limn→∞
bn
an

=∞:

{(lnn)q} � {np} � {np(lnn)r} � {np+s} � {bn} � {n!} � {nn}.

The order applies for positive real numbers p, q, r, s and b > 1.

Example 15 (§10.2 Ex. 79). Use the previous theorem to find the limit of the sequence{
n1000

2n

}
or state that it diverges.
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