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1 The divergence and integral tests

Briggs-Cochran-Gillett-Schulz §10.4 pp. 671 - 680

As we saw in the last class, for geometric series and telescoping series, the sequence of partial
sums can be found and its limit evaluated. But actually, it is difficult or impossible to find
an explicit formula for the sequence of partial sums for most infinite series. So it is tough to
get the value of most convergent series.

So we try to answer another question: given an infinite series, does it converge? If the
answer is no, the series diverges and there are no further questions to ask. But if the answer
is yes, the series converges, and it may be possible to estimate its value.

We give a criterion for when an infinite series diverges:

Theorem 1 (Divergence Test). If
∑

ak converges, then limk→∞ ak = 0. Equivalently, if
limk→∞ ak 6= 0, then the series diverges.

Two key points about this:

1. The Divergence Test CANNOT be used to conclude that a series converges.

2. The Divergence Test does NOT tell us what to conclude if limk→∞ ak = 0.

Example 2 (§10.4 Ex. 9, 10, 14). Use the Divergence Test to determine whether each of
the series below diverges or state that the test is inconclusive.

1.
∑∞

k=0
k

2k+1
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2.
∑∞

k=1
k

k2+1

3.
∑∞

k=1
k2

2k

Our next test comes via a question about the harmonic series

∞∑
k=1

1

k
= 1 +

1

2
+

1

3
+

1

4
+ · · · .

Does it converge? If we look at the sequence of partial sums, we have

S1 = 1

S2 = 1 +
1

2
=

3

2

S3 = 1 +
1

2
+

1

3
=

11

6

S4 = 1 +
1

2
+

1

3
+

1

4
=

25

12
,

and there’s no obvious pattern in this sequence. In fact, there no simple explicit formula for
the Sn.

How do we make sense of the Sn? Observe that

Sn = 1 +
1

2
+

1

3
+

1

4
+ · · ·+ 1

n

is the result of computing a left Riemann sum of the function y = 1
x

on the interval [1, n+1]:
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Comparing the sum of the areas of the n rectangles with the area under the curve, we
see that

Sn >

∫ n+1

1

dx

x
.

We know that ∫ n+1

1

dx

x
= ln(n + 1)

increases without bound as n increases. Thus Sn also increases without bound, and the
harmonic series diverges.

Theorem 3. The harmonic series
∑∞

k=1
1
k

= 1 + 1
2

+ 1
3

+ 1
4

+ · · · diverges, even though the
terms of the series approach zero.

The ideas used to prove that the harmonic series diverges are now used to prove a new
convergence test, the Integral Test. This test applies only to series with positive terms.

Theorem 4 (Integral Test). Suppose f is a continuous, positive, decreasing function,
for x ≥ 1, and let ak = f(k) for k = 1, 2, 3, . . .. Then

∞∑
k=1

ak and

∫ ∞
1

f(x)dx

either both converge or both diverge. In the case of convergence, the value of the integral is
not equal to the value of the series.
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Example 5 (§10.4 Ex. 20, 21). Use the Integral Test to determine the convergence or
divergence of the following series, after showing that the conditions of the Integral Test are
satisfied.

1.
∑∞

k=1
ek

1+e2k

2.
∑∞

k=1 ke
−2k2

The integral test is used to prove the following:

Theorem 6 (p-series test). The p-series
∑∞

k=1
1
kp

converges for p > 1 and diverges for p ≤ 1.

Example 7 (§10.4 Ex. 30, 38). Determine the convergence or divergence of the following
series:

1.
∑∞

k=2
ke

kπ
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2.
∑∞

k=1
1

3√
27k2

Example 8 (§10.4 Ex. 52, 54). Determine whether the following series converge or diverge:

1.
∑∞

k=0
10

k2+9

2.
∑∞

k=1
2k+3k

4k

Theorem 9 (Estimating series with positive terms). Let f be a continuous, positive, de-
creasing function, for x ≥ 1, and let ak = f(k), for k = 1, 2, 3, . . .. Let S =

∑∞
k=1 ak be a

convergent series, and let Sn =
∑n

k=1 ak be the sum of the first n terms of the series. The
remainder Rn = S − Sn satisfies

Rn <

∫ ∞
n

f(x)dx.

Furthermore, the exact value of the series is bounded as follows:

Sn +

∫ ∞
n+1

f(x)dx <

∞∑
k=1

ak < Sn +

∫ ∞
n

f(x)dx.
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Example 10 (§10.4 Ex. 41). Consider the convergent series

∞∑
k=1

1

k6
.

1. Find an upper bound for the remainder in terms of n.

2. Find how many terms are needed to ensure the remainder is less than 10−3.

3. Find lower and upper bounds on the exact value of the series.

4. Find an interval in which the value of the series must lie if you approximate it using
ten terms of the series.
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