MA 124 (Calculus II) Lecture 17: March 26, 2020 Section A3

Professor Jennifer Balakrishnan, jbala@bu.edu

What is on today

1 The divergence and integral tests 1

2 The comparison and limit comparison tests 2

1 The divergence and integral tests

Briggs-Cochran-Gillett-Schulz §10.4 pp. 671 - 680

The following result gives us a way to approximate a series with all positive terms:

Theorem 1 (Estimating series with positive terms). Let f be a continuous, positive, de-
creasing function, for x > 1, and let a, = f(k), for k =1,2,3,.... Let S = ;- a; be a
convergent series, and let S =Y r_,a be the sum of the ﬁrst n terms of the series. The

1. Find an upper bound for the remainder in terms of n.
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2. Find how many terms are needed to ensure the remainder is less than 1073.
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3. Find lower and upper bounds on the exact value of the series.
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4. Find an mt}arval in which the value of the series must lie if you app%’oxz'mate 1t using
ten terms of the series. /;O
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MThe Comparison Test lets us leverage information about the convergence or divergence of a
&

series by comparing it to the behavior of another series:

w\)\p . Theorem 3 (Comparison Test). Let S aj and 3. by be series with positive terms.

W & oMYy
SSQ\\&\Q 1. If ar, < by and ) by, converges, then > aj converges. Z Ay S}‘O k
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%LN 2. If b, < ap and > by, diverges, then Y ay diverges.
Example 4 (§10.5 Ex. 9, 30, 50). Use the Comparison Test to determine whether the

following series converge. 4 we nawe.
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The Comparison Test should be tried if there is an obvious comparison series and the
necessary inequality is easily established. But sometimes the right inequality is not easy to

establish. In this case, it is often easier to use a more refined test called the Limit Comparison
Test:

/" Theorem 5 (Liml‘Comparison Test). Let > ay and > by be series with positive terms and

0 < L < oo (that is, L is a finite positive number), then > ax and ) by either both
converge or both diverge. —“ﬁﬁ )

2. If L =0 and )_ by converges, then Y ap converges.
3. If L =00 and Y by diverges, then > ay diverges.



MA 124 (Calculus I1) Lecture 17: March 26, 2020 Section A3

Example 6 (§10.5 Ex. 12, 24, 44) Use the Limit Comparison Test to determine whether
the following series conver}q’téL Fo compond
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