MA 124 (Calculus I1) Lecture 18: March 31, 2020 Section A3

Professor Jennifer Balakrishnan, jbala@bu.edu
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2 Alternating series 2

1 The comparison and limit comparison tests, wrap up

Briggs-Cochran-Gillett-Schulz §10.5 pp. 683 - 686

Recall our two tests from last class:

Theorem 1 (Comparison Test). Let Y ax and ) by be series with positive terms.

1. If ar, < by and ) by converges, then > aj converges.
2. If by, < ap and ) by, diverges, then Y ay diverges.

Theorem 2 it Comparison Test). Let Y ay and Y by be series with positive terms

and let limy_,J %%/= L.

1. If 0 < L < oo (that is, L is a finite positive number), then Y ay and > by either both
converge or both diverge.

2. If L =0 and )_ by converges, then Y ap converges.
3. If L =00 and ) by, diverges, then Y aj diverges.

Example 3 (§10.5 Ex. 51, 40). Use the test of your choice to determine whether the following
series converge.
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2 Alternating series

Briggs-Cochran-Gillett-Schulz §10.6 pp. 688 - 694

The previous tests focused on infinite series with positive terms. We shift our attention to
studying series with terms that have strictly alternating signs, as in the series

i(_l)m—1—1+l—1+1—1+1—1+
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1

The factor (—1)**! (or possibly (—1)*) provides the alternating signs.
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Theorem 4 (Alternating Series Test). The alternating series > (—1)*"ta, converges if

1. the terms of the series are nonincreasing in magnitude (0 < ak+|@ak, for k greater
than some index N ) and

2. limy, o0 ay, = 0. oecreagng o Beq < A
, , . NowTIn (e eqine 0, . < Q
What does the Alternating Series Test tell us about the alternating harmonic seriég?”'kri = 4,
Theorem 5. The alternating harmonic series - % = 1—%—1—%—%—1—%—- -+ converges.

For series of positive terms, limy_, ar, = 0 does NOT imply convergence. For alter-
nating series with nonincreasing terms, lim;_,,, ay = 0 DOES imply convergence.
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Example 6 (§10.6 Ex. 16, 20, 24). Determine whether the following series converge.
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Recall that if a series converges to a value S, then the remainder is R, = S — 5, where
S, is the sum of the first n terms of the series. An upper bound on the magnitude of the
“Temainder (the absolute error) in an alternating series arises form the following observation:
when the terms are nonincreasing in magnitude, the value of the series is always trapped
between successive terms of the sequence of partial sums. Thus we have

‘Rn’ = ‘S_ Sn‘ S |Sn+1 - Sn‘ = Apy1-
§h~— ZO\k - 1<+\

=1
Theorem 7 (Remainder in Alternating Series). Let > .- (—1)*"a, be a convergent alter-
nating series with terms that are nonincreasing in magnitude. Let R, = S — S, be the

remainder. Then |R,| < any1.
f'//——

This justifies the following theorem:

Example 8 (§10.6 Ex. 35). Determine how many terms of the-convergent series y .-, 2kl)k

must be summed to be sure that the remainder is less than(10~*)in magnitude. (Although)
you do not need it =
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Now we will consider infinite series > a; where the terms are allowed to be any real
numbers (not just all positive or alternating). We first introduce some terminology:

Definition 9. If > |ax| converges, then we say that »_ ay converges absolutely. If > |ag|
diverges and ) ap converges, then _ ay converges conditionally.

1k, . .
The series Z k2 is an example of an absolutely convergent series because the series

of absolute values Lk 1 klz, is a convergent p-series. On the other hand, the alternating
R o Lo .
harmonic series Z ) is an example of a conditionally convergent series since the series
of absolute values >, E is the harmonic series, which diverges.

Theorem 10. If > |ax| converges, then > ap converges (absolute convergence implies con-
vergence). Equivalently, if > ay diverges, then Y |ax| diverges.
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Example 11 (§10.6 Ex. 45, 48, 53). Determine whether the following series converge abso-
lutely, converge conditionally, or diverge.
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