What is on today

1 Ratio test and root test

1 Ratio test and root test

Briggs-Cochran-Gillett-Schulz §10.7 pp. 696 - 698

Today we will discuss two more tests for convergence. The first is the Ratio Test:

Theorem 1 (Ratio Test). Let \(\sum a_k \) be an infinite series, and let

\[
 r = \lim_{k \to \infty} \left| \frac{a_{k+1}}{a_k} \right| .
\]

1. If \(r < 1 \), the series converges absolutely, and therefore it converges.

2. If \(r > 1 \) (including \(r = \infty \)), the series diverges.

3. If \(r = 1 \), the test is inconclusive.

Example 2 (§10.7 Ex. 10, 14). Use the Ratio Test to determine whether the following series converge.

1. \(\sum_{k=1}^{\infty} \frac{(-2)^k}{k!} \)

2. \(\sum_{k=1}^{\infty} \frac{k^k}{2^k} \)
Occasionally a series arises for which the preceding tests are difficult to apply. In these situations, we try the Root Test:

Theorem 3 (Root Test). Let \(\sum a_k \) be an infinite series and let \(\rho = \lim_{k \to \infty} \sqrt[|k|]{|a_k|} \).

1. If \(\rho < 1 \), the series converges absolutely, and therefore it converges.
2. If \(\rho > 1 \) (including \(\rho = \infty \)), the series diverges.
3. If \(\rho = 1 \), the test is inconclusive.

Example 4 (§10.7 Ex. 12, 27). Use the Root Test to determine whether the following series converge.

1. \(\sum_{k=1}^{\infty} \left(-\frac{2k}{k+1} \right)^k \)

2. \(1 + \left(\frac{1}{2} \right)^2 + \left(\frac{1}{3} \right)^3 + \left(\frac{1}{4} \right)^4 + \cdots \)
Now let’s try using all of the tests we’ve learned:

Example 5 (§10.8 Ex. 14, 22, 23, 35, 40, 54). **Determine whether the following series converge. Justify your answers.**

1. \(\sum_{k=1}^{\infty} \frac{7k^2-k-2}{4k^3-3k+1} \)
2. $\sum_{k=1}^{\infty} \left(\frac{e+1}{\pi} \right)^k$

3. $\sum_{k=1}^{\infty} \frac{k^5}{3^k}$

4. $\sum_{k=1}^{\infty} \frac{2^k 3^k}{k^k}$
5. \[\sum_{j=1}^{\infty} \frac{\cos((2j+1)\pi)}{j^2+1} \]

6. \[\sum_{j=1}^{\infty} j^9 \sin \frac{1}{j^2} \]