Professor Jennifer Balakrishnan, jbala@bu.edu

What is on today

1 Approximating functions with polynomials

1

1 Approximating functions with polynomials

Briggs-Cochran-Gillett-Schulz §11.1 pp. 708 - 718

Guess the function!

It's the graph of

Why does it look like the graph of $y = \sin x$?

 $(y = \sin x \text{ is in red})$

This is the sort of thing we will investigate today. First, a *power series* is an infinite series of the form

$$\sum_{k=0}^{\infty} c_k x^k = c_0 + c_1 x + c_2 x^2 + \dots + c_n x^n + \dots ,$$

or more generally,

$$\sum_{k=0}^{\infty} c_k (x-a)^k = c_0 + c_1 (x-a) + \dots + c_n (x-a)^n + \dots ,$$

where the center of the series a and the coefficients c_k are constants. Another way of thinking about this is that a power series is built up from polynomials of increasing degree:

$$c_{0}$$

$$c_{0} + c_{1}x$$

$$c_{0} + c_{1}x + c_{2}x^{2}$$

$$\vdots$$

$$c_{0} + c_{1}x + c_{2}x^{2} + \dots + c_{n}x^{n} = \sum_{k=0}^{n} c_{k}x^{k}$$

$$\vdots$$

$$c_{0} + c_{1}x + c_{2}x^{2} + \dots + c_{n}x^{n} + \dots = \sum_{k=0}^{\infty} c_{k}x^{k}.$$

With this perspective, we begin our exploration of power series by using polynomials to approximate functions.

Earlier, we learned that if a function f is differentiable at a point a, then it can be approximated near a by its tangent line, which is the linear approximation to f at the point a. The linear approximation at a is given by

$$y = f(a) + f'(a)(x - a).$$

Because the linear approximation is a first-degree polynomial, we name it p_1 :

$$p_1(x) := f(a) + f'(a)(x - a).$$

It matches f in value and in slope at a:

$$p_1(a) = f(a), p'_1(a) = f'(a).$$

Linear approximation works well if f has a fairly constant slope near a. However, if f has a lot of curvature near a, then the tangent line may not provide an accurate approximation. To remedy this situation, we create a quadratic approximating polynomial by adding one new term to the linear polynomial. Denoting this new polynomial p_2 , we let

$$p_2(x) := f(a) + f'(a)(x-a) + c_2(x-a)^2 = p_1(x) + c_2(x-a)^2.$$

To determine c_2 , we require that p_2 agree with f in value, slope, and concavity at a:

By construction, it already agrees with f in value and slope at a. Differentiating $p_2(x)$ twice and substituting x = a yields

$$p_2''(a) = 2c_2 = f''(a).$$

Thus it follows that $c_2 = \frac{1}{2}f''(a)$ and

$$p_2(x) = f(a) + f'(a)(x-a) + \frac{1}{2}f''(a)(x-a)^2.$$

Example 1 (§11.1 Ex. 10, 12).

- (a) Find the linear approximating polynomial for the following functions centered at the given point a.
- (b) Find the quadratic approximating polynomial for the following functions centered at the given point a.
- (c) Use the polynomials obtained in the first two parts to approximate the given quantity.
- 1. $f(x) = \frac{1}{x}, a = 1$, approximate $\frac{1}{1.05}$

2. $f(x) = \sqrt{x}, a = 4$, approximate $\sqrt{3.9}$

Assume that f and its first n derivatives exist at a. Our goal is to find an nth-degree polynomial that approximates the values of f near a. The first step is to use p_2 to obtain a cubic polynomial p_3 of the form

$$p_3(x) = p_2(x) + c_3(x-a)^3$$

that satisfies the four matching conditions

$$p_3(a) = f(a), p'_3(a) = f'(a), p''_3(a) = f''(a), p'''_3(a) = f'''(a).$$

Because p_3 is built using p_2 , the first three conditions are met. The last condition is used to determine c_3 . Differentiating as before, we find $p_3''(x) = 3 \cdot 2c_3 = 3!c_3$, or in other words,

$$c_3 = \frac{f^{\prime\prime\prime}(a)}{3!}.$$

Continuing in this way, building each new polynomial on the previous polynomial, we construct the Taylor polynomials:

Definition 2. Let f be a function with f', f'', \ldots and $f^{(n)}$ defined at a. The nth order Taylor polynomial for f with its center at a, denoted p_n , has the property that it matches f in value, slope, and all derivatives up to the nth derivative at a. That is,

$$p_n(a) = f(a), p'_n(a) = f'(a), \dots, p_n^{(n)}(a) = f^{(n)}(a).$$

The nth-order Taylor polynomial centered at a is

$$p_n(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n$$

Example 3 (§11.1 Ex. 20). Let $f(x) = \cos x$ and $a = \pi/6$. Find the nth-order Taylor polynomials for f(x) centered at a, for n = 0, 1, 2.

We can look at approximations obtained with Taylor polynomials and give estimates on the remainder in a Taylor polynomial.

Example 4 (§11.1 Ex. 29). Use a Taylor polynomial of order 2 to approximate $\sqrt{1.05}$. Hint: use the quadratic Taylor polynomial approximation of $f(x) = \sqrt{1+x}$.

Taylor polynomials provide good approximations to functions near a specific point. But how accurate are the approximations? To answer this, we define the **remainder** in a Taylor polynomial:

Definition 5. Let p_n be the Taylor polynomial of order n for f. The remainder in using p_n to approximate f at the point x is $R_n(x) = f(x) - p_n(x)$.

We have the following result quantifying the remainder:

Theorem 6 (Taylor's theorem). Let f have continuous derivatives up to $f^{(n+1)}$ on an open interval I containing a. For all x in I, we have $f(x) = p_n(x) + R_n(x)$, where p_n is the nth-order Taylor polynomial for f centered at a and the remainder is

$$R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1},$$

for some point c between x and a.

Example 7 (§11.1 Ex. 43, 44). Find the remainder R_n for the nth order Taylor polynomial centered at a for the given functions. Express the result for a general value of n.

1.
$$f(x) = e^{-x}, a = 0.$$

2. $f(x) = \cos x, a = \frac{\pi}{2}$.

The difficulty in estimating the remainder is finding a bound for $|f^{(n+1)}(c)|$. Assuming this can be done, we have the following theorem:

Theorem 8 (Estimate of the remainder). Let n be a fixed positive integer. Suppose there exists a number M such that $|f^{(n+1)}(c)| \leq M$, for all c between a and x, inclusive. The remainder in the nth-order Taylor polynomial for f centered at a satisfies

$$|R_n(x)| = |f(x) - p_n(x)| \le M \frac{|x - a|^{n+1}}{(n+1)!}.$$

Example 9 (§11.1 Ex. 49). Use the remainder to find a bound on the error in approximating $e^{0.25}$ with the 4th-order Taylor polynomial centered at 0.