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Professor Jennifer Balakrishnan, jbala@bu.edu

What is on today

1 Approximating functions with polynomials 1

1 Approximating functions with polynomials

Briggs-Cochran-Gillett-Schulz §11.1 pp. 708 - 718

Guess the function!
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Why does it look like the graph of y = sinx?

(y = sinx is in red)

This is the sort of thing we will investigate today. First, a power series is an infinite
series of the form

∞∑
k=0

ckx
k = c0 + c1x+ c2x

2 + · · ·+ cnx
n + · · · ,

or more generally,
∞∑
k=0

ck(x− a)k = c0 + c1(x− a) + · · ·+ cn(x− a)n + · · · ,

where the center of the series a and the coefficients ck are constants. Another way of thinking
about this is that a power series is built up from polynomials of increasing degree:

c0

c0 + c1x

c0 + c1x+ c2x
2

...

c0 + c1x+ c2x
2 + · · · cnxn =

n∑
k=0

ckx
k

...

c0 + c1x+ c2x
2 + · · · cnxn + · · · =

∞∑
k=0

ckx
k.
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With this perspective, we begin our exploration of power series by using polynomials to
approximate functions.

Earlier, we learned that if a function f is differentiable at a point a, then it can be
approximated near a by its tangent line, which is the linear approximation to f at the point
a. The linear approximation at a is given by

y = f(a) + f ′(a)(x− a).

Because the linear approximation is a first-degree polynomial, we name it p1:

p1(x) := f(a) + f ′(a)(x− a).

It matches f in value and in slope at a:

p1(a) = f(a), p′1(a) = f ′(a).

Linear approximation works well if f has a fairly constant slope near a. However, if f has
a lot of curvature near a, then the tangent line may not provide an accurate approximation.
To remedy this situation, we create a quadratic approximating polynomial by adding one
new term to the linear polynomial. Denoting this new polynomial p2, we let

p2(x) := f(a) + f ′(a)(x− a) + c2(x− a)2 = p1(x) + c2(x− a)2.

To determine c2, we require that p2 agree with f in value, slope, and concavity at a:
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By construction, it already agrees with f in value and slope at a. Differentiating p2(x) twice
and substituting x = a yields

p′′2(a) = 2c2 = f ′′(a).

Thus it follows that c2 = 1
2
f ′′(a) and

p2(x) = f(a) + f ′(a)(x− a) +
1

2
f ′′(a)(x− a)2.

Example 1 (§11.1 Ex. 10, 12).

(a) Find the linear approximating polynomial for the following functions centered at the
given point a.

(b) Find the quadratic approximating polynomial for the following functions centered at the
given point a.

(c) Use the polynomials obtained in the first two parts to approximate the given quantity.

1. f(x) = 1
x
, a = 1, approximate 1

1.05

2. f(x) =
√
x, a = 4, approximate

√
3.9
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Assume that f and its first n derivatives exist at a. Our goal is to find an nth-degree
polynomial that approximates the values of f near a. The first step is to use p2 to obtain a
cubic polynomial p3 of the form

p3(x) = p2(x) + c3(x− a)3

that satisfies the four matching conditions

p3(a) = f(a), p′3(a) = f ′(a), p′′3(a) = f ′′(a), p′′′3 (a) = f ′′′(a).

Because p3 is built using p2, the first three conditions are met. The last condition is used to
determine c3. Differentiating as before, we find p′′′3 (x) = 3 · 2c3 = 3!c3, or in other words,

c3 =
f ′′′(a)

3!
.

Continuing in this way, building each new polynomial on the previous polynomial, we
construct the Taylor polynomials:

Definition 2. Let f be a function with f ′, f ′′, . . . and f (n) defined at a. The nth order Taylor
polynomial for f with its center at a, denoted pn, has the property that it matches f in value,
slope, and all derivatives up to the nth derivative at a. That is,

pn(a) = f(a), p′n(a) = f ′(a), . . . , p(n)n (a) = f (n)(a).

The nth-order Taylor polynomial centered at a is

pn(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2 + · · ·+ f (n)(a)

n!
(x− a)n.

Example 3 (§11.1 Ex. 20). Let f(x) = cosx and a = π/6. Find the nth-order Taylor
polynomials for f(x) centered at a, for n = 0, 1, 2.
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We can look at approximations obtained with Taylor polynomials and give estimates on
the remainder in a Taylor polynomial.

Example 4 (§11.1 Ex. 29). Use a Taylor polynomial of order 2 to approximate
√

1.05. Hint:
use the quadratic Taylor polynomial approximation of f(x) =

√
1 + x.

Taylor polynomials provide good approximations to functions near a specific point. But
how accurate are the approximations? To answer this, we define the remainder in a Taylor
polynomial:

Definition 5. Let pn be the Taylor polynomial of order n for f . The remainder in using pn
to approximate f at the point x is Rn(x) = f(x)− pn(x).

We have the following result quantifying the remainder:

Theorem 6 (Taylor’s theorem). Let f have continuous derivatives up to f (n+1) on an open
interval I containing a. For all x in I, we have f(x) = pn(x) + Rn(x), where pn is the
nth-order Taylor polynomial for f centered at a and the remainder is

Rn(x) =
f (n+1)(c)

(n+ 1)!
(x− a)n+1,

for some point c between x and a.

Example 7 (§11.1 Ex. 43, 44). Find the remainder Rn for the nth order Taylor polynomial
centered at a for the given functions. Express the result for a general value of n.

1. f(x) = e−x, a = 0.

6



MA 124 (Calculus II) Lecture 20: April 7, 2020 Section A3

2. f(x) = cos x, a = π
2
.

The difficulty in estimating the remainder is finding a bound for |f (n+1)(c)|. Assuming
this can be done, we have the following theorem:

Theorem 8 (Estimate of the remainder). Let n be a fixed positive integer. Suppose there
exists a number M such that |f (n+1)(c)| ≤ M , for all c between a and x, inclusive. The
remainder in the nth-order Taylor polynomial for f centered at a satisfies

|Rn(x)| = |f(x)− pn(x)| ≤M
|x− a|n+1

(n+ 1)!
.

Example 9 (§11.1 Ex. 49). Use the remainder to find a bound on the error in approximating
e0.25 with the 4th-order Taylor polynomial centered at 0.
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