What is on today

1 Approximating functions with polynomials

1 Approximating functions with polynomials

Briggs-Cochran-Gillett-Schulz §11.1 pp. 708 - 718

Guess the function!
It’s the graph of
\[y = \frac{1}{20397820811974435864028179902897356800000000} + \frac{1}{10333147966144929866651337523200000000} x^{39} + \frac{1}{1376375309122634504631597958158090240000000000} x^{37} \]
\[- \frac{1}{822838654177922817725562880000000} x^{31} + \frac{1}{8417619937397015954436160000000} x^{29} - \frac{1}{10888694504183521607680000000} x^{27} \]
\[+ \frac{1}{15512120433095984000000} x^{23} - \frac{1}{25852016738849766400000} x^{21} + \frac{1}{51090942171704944000000} x^{19} \]
\[- \frac{1}{1216451004088320000} x^{17} + \frac{1}{130767436800000} x^{15} + \frac{1}{39916800} x^{11} + \frac{1}{5040} x^{9} \]
\[- \frac{1}{6} x^3 + x \]

Why does it look like the graph of \(y = \sin x \)?

\((y = \sin x \text{ is in red})\)

This is the sort of thing we will investigate today. First, a **power series** is an infinite series of the form

\[\sum_{k=0}^{\infty} c_k x^k = c_0 + c_1 x + c_2 x^2 + \cdots + c_n x^n + \cdots, \]

or more generally,

\[\sum_{k=0}^{\infty} c_k (x - a)^k = c_0 + c_1 (x - a) + \cdots + c_n (x - a)^n + \cdots, \]

where the center of the series \(a \) and the coefficients \(c_k \) are constants. Another way of thinking about this is that a power series is built up from polynomials of increasing degree:

\[
\begin{align*}
c_0 \\
c_0 + c_1 x \\
c_0 + c_1 x + c_2 x^2 \\
\vdots \\
c_0 + c_1 x + c_2 x^2 + \cdots + c_n x^n = \sum_{k=0}^{n} c_k x^k \\
\vdots \\
c_0 + c_1 x + c_2 x^2 + \cdots + c_n x^n + \cdots = \sum_{k=0}^{\infty} c_k x^k.
\end{align*}
\]
With this perspective, we begin our exploration of power series by using polynomials to approximate functions.

Earlier, we learned that if a function f is differentiable at a point a, then it can be approximated near a by its tangent line, which is the linear approximation to f at the point a. The linear approximation at a is given by

$$y = f(a) + f'(a)(x - a).$$

Because the linear approximation is a first-degree polynomial, we name it p_1:

$$p_1(x) := f(a) + f'(a)(x - a).$$

It matches f in value and in slope at a:

$$p_1(a) = f(a), \quad p_1'(a) = f'(a).$$

Linear approximation works well if f has a fairly constant slope near a. However, if f has a lot of curvature near a, then the tangent line may not provide an accurate approximation. To remedy this situation, we create a quadratic approximating polynomial by adding one new term to the linear polynomial. Denoting this new polynomial p_2, we let

$$p_2(x) := f(a) + f'(a)(x - a) + c_2(x - a)^2 = p_1(x) + c_2(x - a)^2.$$

To determine c_2, we require that p_2 agree with f in value, slope, and concavity at a:
By construction, it already agrees with f in value and slope at a. Differentiating $p_2(x)$ twice and substituting $x = a$ yields

$$p'_2(a) = 2c_2 = f''(a).$$

Thus it follows that $c_2 = \frac{1}{2} f''(a)$ and

$$p_2(x) = f(a) + f'(a)(x-a) + \frac{1}{2} f''(a)(x-a)^2.$$

Example 1 (**§11.1 Ex. 10, 12**).

(a) Find the linear approximating polynomial for the following functions centered at the given point a.

(b) Find the quadratic approximating polynomial for the following functions centered at the given point a.

(c) Use the polynomials obtained in the first two parts to approximate the given quantity.

1. $f(x) = \frac{1}{x}, a = 1$, approximate \(f(1.05) \).

 $p_1(x) = f(a) + f'(a)(x-a) = 1 + -1(x-1) = 1-x+1 = 2-x$ \(\approx \) linear approx.

 $p_2(x) = f(a) + f'(a)(x-a) + \frac{1}{2} f''(a)(x-a)^2 = 1 + -1(x-1) + \frac{1}{2}(2)(x-1)^2 = 1-x+1+(x-1)^2 = 2-x+(x-1)^2$ \(\approx \) quadratic approx.

2. $f(x) = \sqrt{x}, a = 4$, approximate $\sqrt{3.9}$.

 $p_1(x) = f(a) + f'(a)(x-a) = f(4) + f'(4)(x-4) = 2 + \frac{1}{2}(x-4)$

 $p_2(x) = f(a) + f'(a)(x-a) + \frac{1}{2} f''(a)(x-a)^2 = f(4) + f'(4)(x-4) + \frac{1}{2} f''(4)(x-4)^2 = 2 + \frac{1}{2}(x-4) + \frac{1}{32} \cdot \frac{1}{2} (x-4)^2 = 2+\frac{1}{2}(x-4)-\frac{1}{64}(x-4)^2$ on a calculator

 $p_1(3.9) = 2+\frac{1}{2}(3.9-4) = 1.975 \approx 1.975$

 $p_2(3.9) = 1.97484375$

 $\sqrt{3.9} \approx 1.97484804$
Assume that \(f \) and its first \(n \) derivatives exist at \(a \). Our goal is to find an \(n \)-th-degree polynomial that approximates the values of \(f \) near \(a \). The first step is to use \(p_2 \) to obtain a cubic polynomial \(p_3 \) of the form
\[
p_3(x) = p_2(x) + c_3(x-a)^3
\]
that satisfies the four matching conditions
\[
p_3(a) = f(a), p'_3(a) = f'(a), p''_3(a) = f''(a), p'''_3(a) = f'''(a).
\]
Because \(p_3 \) is built using \(p_2 \), the first three conditions are met. The last condition is used to determine \(c_3 \). Differentiating as before, we find \(p'''_3(x) = 3 \cdot 2c_3 = 3!c_3 \), or in other words,
\[
c_3 = \frac{f'''(a)}{3!}.
\]
Continuing in this way, building each new polynomial on the previous polynomial, we construct the Taylor polynomials:

Definition 2. Let \(f \) be a function with \(f', f'', \ldots \) and \(f^{(n)} \) defined at \(a \). The \(n \)-th order Taylor polynomial for \(f \) with its center at \(a \), denoted \(p_n \), has the property that it matches \(f \) in value, slope, and all derivatives up to the \(n \)-th derivative at \(a \). That is,
\[
p_n(a) = f(a), p'_n(a) = f'(a), \ldots, p^{(n)}_n(a) = f^{(n)}(a).
\]
The \(n \)-th-order Taylor polynomial centered at \(a \) is
\[
p_n(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \cdots + \frac{f^{(n)}(a)}{n!}(x-a)^n.
\]

Example 3 (§11.1 Ex. 20). Let \(f(x) = \cos x \) and \(a = \pi/6 \). Find the \(n \)-th-order Taylor polynomials for \(f(x) \) centered at \(a \), for \(n = 0, 1, 2, 5 \).

6th order Taylor polynomial?
\[
p_6(x) = f(a) = \frac{\sqrt{3}}{2}
\]

1st order Taylor polynomial:
\[
p_1(x) = f(a) + f'(a)(x-a) = \frac{\sqrt{3}}{2} - \frac{1}{2}(x - \frac{\pi}{6})
\]

2nd order Taylor polynomial:
\[
p_2(x) = p_1(x) + \frac{f''(a)}{2!}(x-a)^2 = \frac{\sqrt{3}}{2} - \frac{1}{2}(x - \frac{\pi}{6}) + \frac{-\sqrt{3}}{2} \cdot \left(\frac{1}{2}\right)(x - \frac{\pi}{6})^2
\]
\[
p_3(x) = p_2(x) + \frac{f'''(a)}{3!}(x-a)^3
\]
We can look at approximations obtained with Taylor polynomials and give estimates on the remainder in a Taylor polynomial.

Example 4 (§11.1 Ex. 29). Use a Taylor polynomial of order 2 to approximate $\sqrt{1.05}$. Hint: use the quadratic Taylor polynomial approximation of $f(x) = \sqrt{1+x}$.

Definition 5. Let p_n be the Taylor polynomial of order n for f. The remainder in using p_n to approximate f at the point x is $R_n(x) = f(x) - p_n(x)$.

We have the following result quantifying the remainder:

Theorem 6 (Taylor’s theorem). Let f have continuous derivatives up to $f^{(n+1)}$ on an open interval I containing a. For all x in I, we have $f(x) = p_n(x) + R_n(x)$, where p_n is the nth-order Taylor polynomial for f centered at a and the remainder is

$$R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!} (x-a)^{n+1},$$

for some point c between x and a.

Example 7 (§11.1 Ex. 43, 44). Find the remainder R_n for the nth order Taylor polynomial centered at a for the given functions. Express the result for a general value of n.

1. $f(x) = e^{-x}$, $a = 0$.

$$R_n(x) = \frac{(-1)^{n+1} e^{-c}}{(n+1)!} x^{n+1},$$

for c between 0 and x.

$$f(x) = e^{-x}, \quad f'(x) = -e^{-x}, \quad f''(x) = -e^{-x}, \quad f'''(x) = -e^{-x}, \quad \vdots$$
2. \(f(x) = \cos x, a = \frac{\pi}{2} \).

The difficulty in estimating the remainder is finding a bound for \(|f^{(n+1)}(c)| \). Assuming this can be done, we have the following theorem:

Theorem 8 (Estimate of the remainder). Let \(n \) be a fixed positive integer. Suppose there exists a number \(M \) such that \(|f^{(n+1)}(c)| \leq M \), for all \(c \) between \(a \) and \(x \), inclusive. The remainder in the \(n \)th-order Taylor polynomial for \(f \) centered at \(a \) satisfies

\[
|R_n(x)| = |f(x) - p_n(x)| \leq M \frac{|x - a|^{n+1}}{(n+1)!}.
\]

Example 9 (§11.1 Ex. 49). Use the remainder to find a bound on the error in approximating \(e^{0.25} \) with the 4th-order Taylor polynomial centered at 0.