Professor Jennifer Balakrishnan, jbala@bu.edu

What is on today

1	Properties of power series	1
2	Taylor series	3

1 Properties of power series

Briggs-Cochran-Gillett-Schulz §11.2 pp. 722 - 726

Theorem 1 (Differentiating and integrating power series). Suppose the power series $\sum c_k (x-a)^k$ converges for |x-a| < R and defines a function f on that interval.

- 1. Then f is differentiable (which implies continuous) for |x-a| < R, and f' is found by differentiating the power series for f term by term; that is, $f'(x) = \sum kc_k(x-a)^{k-1}$, for |x-a| < R.
- 2. The indefinite integral of f is found by integrating the power series for f term by term; that is, $\int f(x)dx = \sum c_k \frac{(x-a)^{k+1}}{k+1} + C$, for |x-a| < R, where C is an arbitrary constant.

Example 2 (§11.2 Ex. 52, 54, 56). Find the power series representation for g centered at 0 by differentiating or integrating the power series for f (perhaps more than once). Give the interval of convergence for the resulting series.

1.
$$g(x) = \frac{1}{(1-x)^3}$$
 using $f(x) = \frac{1}{1-x}$

2.
$$g(x) = \frac{x}{(1+x^2)^2}$$
 using $f(x) = \frac{1}{1+x^2}$

3.
$$g(x) = \ln(1+x^2)$$
 using $f(x) = \frac{x}{1+x^2}$

Example 3 (§11.2 Ex, 58, 60). Find power series representations centered at 0 for the following functions using known power series. Give the interval of convergence for the resulting series.

1. $f(x) = \frac{1}{1-x^4}$

2. $f(x) = \ln \sqrt{1 - x^2}$

Example 4 (§11.2 Ex. 68). Find the function represented by the series $\sum_{k=1}^{\infty} \frac{x^{2k}}{4^k}$ and find the interval of convergence of the series.

2 Taylor series

Briggs-Cochran-Gillett-Schulz §11.3 pp. 731 - 740

Suppose a function f has derivatives $f^{(k)}(a)$ of all orders at the point a. If we write the nth order Taylor polynomial for f centered at a and allow n to increase indefinitely, we get a power series – the Taylor series for f centered at a:

$$c_0 + c_1(x-a) + c_2(x-a)^2 + \dots + c_n(x-a)^n + \dots = \sum_{k=0}^{\infty} c_k(x-a)^k,$$

where the coefficients are given by

$$c_k = \frac{f^{(k)}(a)}{k!}, \quad k = 0, 1, 2, \dots$$

The special case of a Taylor series centered at 0 is called a Maclaurin series.

For the Taylor series to be useful, we need to know two things: the values of x for which the Taylor series converges, and the values of x for which the Taylor series for f equals f. We will study the first issue now in a few examples. We will look at the second issue during the next class.

Example 5 (§11.3 Ex. 11, 12). For each of the following functions,

- (a) Find the first four nonzero terms of the Maclaurin series.
- (b) Write the power series using summation notation.
- (c) Determine the interval of convergence.
- 1. $f(x) = e^{-x}$

2. $f(x) = \cos(2x)$