MA 124 (Calculus II) Lecture 22: April 14, 2020 Section A3

Professor Jennifer Balakrishnan, jbala@bu.edu

What is on today

1 Properties of power series 1

2 Taylor series 3

1 Properties of power series

Briggs-Cochran-Gillett-Schulz §11.2 pp. 722 - 726

Theorem 1 (Differentiating and integrating power series). Suppose the power seriesy . cx(x—
a)® converges for |v — a| < R and defines a function f on that interval.

1. Then f is differentiable (which implies continuous) for |x —a| < R, and f’ is found by
differentiating the power series for f term by term; that is, f'(x) = kep(x — a)f=1,
for |x —a| < R.

2. The indefinite integral of f is found by integrating the power series for f term by term;

that is, [ f(z)de =3 ¢ kiiﬁ +C, for |x—a| < R, where C is an arbitrary constant.

xample 2 (§11.2 Ex. 52, 54, 56). Find the power series representation for g centered at 0
by differentiating or integrating the power series for f (perhaps more than once). Give the
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e ; interval of convergence for the resulting series.
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xample 3 (§11. 2EX 58, 60). Find power series representations centered at 0 for the fol-
lowing functions using known power series. Give the interval of convergence for the resulting
series.
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Example 4 (§11.2 Ex. 68). Find the function represented by the series Y p-, ’ii: and find

the interval of coogwergence of the series. 2 XL
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Briggs-Cochran-Gillett-Schulz §11.3 pp. 731 - 740

Suppose a function f has derivatives f*)(a) of all orders at the point a. If we write the nth
order Taylor polynomial for f centered at a and allow n to increase indefinitely, we get a
power series — the Taylor series for f centered at a:

cot+ci(xr—a)+ey(r—a)+ - +cp(z—a)" chx—a

where the coefficients are given by
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The special case of a Taylor series centered at 0 is called a Maclaurin series.

For the Taylor series to be useful, we need to know two things: the values of x for which
the Taylor series converges, and the values of x for which the Taylor series for f equals f.
We will study the first issue now in a few examples. We will look at the second issue during
the next class.

Example 5 (§11.3 Ex. 11, 12). For each of the following functions,

(a) Find the first four nonzero terms of the Maclaurin series. ~S =0

(b) Write the power series using summation notation. o' = |

(¢) Determine the interval of convergence.
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2. f(z) = cos(2x)
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