Professor Jennifer Balakrishnan, jbala@bu.edu

What is on today

Properties of power series

1

Taylor series

3

Properties of power series 1

Briggs-Cochran-Gillett-Schulz §11.2 pp. 722 - 726

Theorem 1 (Differentiating and integrating power series). Suppose the power series $\sum c_k(x |a|^k$ converges for |x-a| < R and defines a function f on that interval.

1. Then f is differentiable (which implies continuous) for |x-a| < R, and f' is found by differentiating the power series for f term by term; that is, $f'(x) = \sum kc_k(x-a)^{k-1}$, for |x-a| < R.

2. The indefinite integral of f is found by integrating the power series for f term by term; that is, $\int f(x)dx = \sum c_k \frac{(x-a)^{k+1}}{k+1} + C$, for |x-a| < R, where C is an arbitrary constant.

Example 2 (§11.2 Ex. 52, 54, 56). Find the power series representation for g centered at θ by differentiating or integrating the power series for f (perhaps more than \overline{once}). Give the interval of convergence for the resulting series.

1. $g(x) = \frac{1}{(1-x)^3} \text{ using } f(x) = \frac{1}{1-x}$ Power series for $f(x) = \frac{1}{1-x} = \frac{1+x+x^2+x^3}{1-x} + \cdots$

Radius of convergence:

True = $x + (+2x + 3x^2)$ Thom are f(x) and g(x) related? $f(x) = (1-x)^{-1} \stackrel{?}{\longrightarrow} g(x)^2 = (1-x)^{-3}$ $f'(x) = -((1-x)^{-2} \cdot (-1)) = f''(x) = \int_{k=1}^{\infty} k \cdot x^{k-1}$ $= (1-x)^{-2} = (1-x)^{-3} = \int_{-1}^{1} (x) \cdot x^{k-2}$ $= 2(1-x)^{-3} = \int_{-1}^{1} (x) \cdot x^{k-1} = \int_{-1}^{\infty} (x) \cdot x^{k-1}$ $= 2(1-x)^{-3} = \int_{-1}^{\infty} (x) \cdot x^{k-1} = \int_{-1}^{\infty} x \cdot x^{k-1}$ $= 2(1-x)^{-3} = \int_{-1}^{\infty} (x) \cdot x^{k-1} = \int_{-1}^{\infty} x \cdot x^{k-1} = \int_{-1$

 $|\text{Im}_{k \to \infty}| \frac{|\text{ak+1}|}{|\text{ak}|} = \frac{|\text{Im}_{k \to \infty}|}{|\text{k+1}| \cdot |\text{k} \cdot |\text{x}|} = \frac{|\text{x}|}{|\text{k+1}|} = \frac{|\text{x}|}{|\text{x}|} = \frac{|\text{x}|}{|\text{x$

2.
$$g(x) = \frac{\pi}{(1+x^2)^2}$$
 using $f(x) = \frac{1}{1+x^2}$

Power serves for $f(x) = \frac{1}{1+x^2}$

$$f(x) = (1+x^2)^{-1}$$

$$f(x) = (-1)(1+x^2)^{-1}$$

$$f(x) = (-1)(1+x^2)^{-1}$$

$$f(x) = -2x + 4x^2 - 6x^2 + 8x^2 + \cdots$$

$$f(x) = -2x + 4x^2 - 6x^2 + 8x^2 + \cdots$$

$$f(x) = -2x + 4x^2 - 6x^2 + 8x^2 + \cdots$$

$$f(x) = -2x + 4x^2 - 6x^2 + 8x^2 + \cdots$$

$$f(x) = -2x + 4x^2 - 6x^2 + 8x^2 + \cdots$$

$$f(x) = -2x + 4x^2 - 6x^2 + 8x^2 + \cdots$$

$$f(x) = -2x + 4x^2 - 6x^2 + 8x^2 + \cdots$$

$$f(x) = -2x + 4x^2 - 6x^2 + 8x^2 + \cdots$$

$$f(x) = -2x + 4x^2 - 6x^2 + 8x^2 + \cdots$$

$$f(x) = -2x + 4x^2 - 6x^2 + 8x^2 + \cdots$$

$$f(x) = -2x + 4x^2 - 6x^2 + 8x^2 + \cdots$$

$$f(x) = -2x + 4x^2 - 6x^2 + 8x^2 + \cdots$$

$$f(x) = -2x + 4x^2 - 6x^2 + 8x^2 + \cdots$$

$$f(x) = -2x + 4x^2 - 6x^2 + 8x^2 + \cdots$$

$$f(x) = -2x + 4x^2 - 6x^2 + 8x^2 + \cdots$$

$$f(x) = -2x + 4x^2 - 6x^2 + 8x^2 + \cdots$$

$$f(x) = -2x + 4x^2 - 6x^2 + 8x^2 + \cdots$$

$$f(x) = -2x + 4x^2 - 6x^2 + 8x^2 + \cdots$$

$$f(x) = -2x + 4x^2 - 6x^2 + 8x^2 + \cdots$$

$$f(x) = -2x + 4x^2 - 6x^2 + 8x^2 + \cdots$$

$$f(x) = -2x + 4x^2 - 6x^2 + 8x^2 + \cdots$$

$$f(x) = -2x + 4x^2 - 6x^2 + 8x^2 + \cdots$$

$$f(x) = -2x + 4x^2 - 6x^2 + 8x^2 + \cdots$$

$$f(x) = -2x + 4x^2 - 6x^2 + 8x^2 + \cdots$$

$$f(x) = -2x + 4x^2 - 6x^2 + 8x^2 + \cdots$$

$$f(x) = -2x + 4x^2 - 6x^2 + 8x^2 + \cdots$$

$$f(x) = -2x + 4x^2 - 6x^2 + 8x^2 + \cdots$$

$$f(x) = -2x + 4x^2 - 6x^2 + 8x^2 + \cdots$$

$$f(x) = -2x + 4x^2 - 6x^2 + 8x^2 + \cdots$$

$$f(x) = -2x + 4x^2 - 6x^2 + 8x^2 + \cdots$$

$$f(x) = -2x + 4x^2 - 6x^2 + 8x^2 + \cdots$$

$$f(x) = -2x + 4x^2 + 6x^2 + 6x^2 + x^2 + \cdots$$

$$f(x) = -2x + 4x^2 + 6x^2 + x^2 + x^2 + \cdots$$

$$f(x) = -2x + 4x^2 + x^2 + x^$$

lowing functions using known power series. Give the interval of convergence for the resulting series.

1.
$$f(x) = \frac{1}{1-x^4}$$
 how does this relate to a function whose power series we already know? This is close to $\frac{1}{1-x} = \sum_{k=0}^{\infty} x^k$
 \implies So take $\frac{1}{1-x^4} = \sum_{k=0}^{\infty} (x^4)^k = \sum_{k=0}^{\infty} x^4k$

interval of conv: $\lim_{k \to \infty} \frac{x^4k^4}{x^4k^4} < 1$
 $= \lim_{k \to \infty} |x^4| < 1 \Rightarrow |x| < 1$
 $= \lim_{k \to \infty} |x^4| < 1 \Rightarrow |x| < 1$

find mterval: $(-1, 1)$.

2.
$$f(x) = \ln \sqrt{1-x^2}$$
 Hint: Lie $\ln (1-x) = -\sum \frac{x^k}{k}$ rewrite $f(x) = \ln \sqrt{1-x^2}$ as $c \cdot \ln (1-x^2)$.

get power series, use ratiotest to find interval (check end pts too)

Example 4 (§11.2 Ex. 68). Find the function represented by the series $\sum_{k=1}^{\infty} \frac{x^{2k}}{4^k}$ and find the interval of convergence of the series.

Briggs-Cochran-Gillett-Schulz §11.3 pp. 731 - 740

Suppose a function f has derivatives $f^{(k)}(a)$ of all orders at the point a. If we write the nth order Taylor polynomial for f centered at a and allow n to increase indefinitely, we get a power series – the Taylor series for f centered at a:

$$c_0 + c_1(x-a) + c_2(x-a)^2 + \dots + c_n(x-a)^n + \dots = \sum_{k=0}^{\infty} c_k(x-a)^k,$$

where the coefficients are given by

$$c_k = \frac{f^{(k)}(a)}{k!}, \quad k = 0, 1, 2, \dots$$

The special case of a Taylor series centered at 0 is called a Maclaurin series.

For the Taylor series to be useful, we need to know two things: the values of x for which the Taylor series converges, and the values of x for which the Taylor series for f equals f. We will study the first issue now in a few examples. We will look at the second issue during the next class.

Example 5 (§11.3 Ex. 11, 12). For each of the following functions,

- (a) Find the first four nonzero terms of the Maclaurin series.
- (b) Write the power series using summation notation.

0! = 1

1.
$$f(x) = e^{-x} \rightarrow^{+1} = \sum_{k=0}^{\infty} C_k (x - x)^{-1}$$

$$f''(x) = -e^{-x}$$

$$f'''(x) = e^{-x}$$

$$evaluate \rightarrow^{+1}$$

$$ot a = 0 \rightarrow -1$$

$$f'''(x) = e^{-x}$$

$$+1$$

(c) Determine the interval of convergence.

1.
$$f(x) = e^{-x} \Rightarrow^{+1} = \sum_{k=0}^{\infty} C_k (x-\alpha)^k$$

$$f''(x) = -e^{-x}$$

$$f'''(x) = e^{-x}$$

$$f''''(x) = -e^{-x}$$

$$f''''(x) = -e^{-x}$$

$$f''''(x) = e^{-x}$$

$$f''''(x) = e^{-x}$$

$$f''''(x) = e^{-x}$$

$$f''''(x) = e^{-x}$$

$$f^{(4)}(x) = e^{-x}$$

$$f^{(4)$$

Interval of convergence:

Ratio Test: $\lim_{k \to \infty} \left| \frac{x^{k+1}}{x^k} \right| = \lim_{k \to \infty} \left| \frac{x \cdot 1}{x^k} \right| = \lim_{k \to \infty} \frac{|x|}{x^k} = 0 < |x| \text{ always true} > (-\infty, \infty)$

2. $f(x) = \cos(2x)$